Torch

Dr Emanuele Verrelli

Lecturer in Physics

Faculty and Department

  • Faculty of Science and Engineering
  • Department of Physics and Mathematics

Qualifications

  • PCAP (University of Hull)

Summary

Emanuele received his degree in Physics (equivalent MPhys) "cum laude" from the department of Physics at the University of Rome "La Sapienza" (Italy) in 2002. He then obtained a Master in Physics (MSc) from the department of Physics at the National Technical University of Athens (NTUA, Greece) in 2004 where he also obtained his PhD in 2010 on "Semiconducting and metallic nanoparticles for non-volatile memory applications" under the supervision of Prof. D. Tsoukalas. For his PhD thesis work Emanuele was later awarded the "Best PhD thesis in the year 2010" prize.

After his PhD, Emanuele worked as postdoctoral research fellow at NTUA in 2010 and 2011 in a joint collaboration between industry and academia (EU Marie-Curie project) for the development of nanoparticle resistive switching memories based on titanium dioxide nanoparticles. In 2012 he joined, as postdoctoral research fellow, Prof. Mary O'Neiil's group in the Department of Physics and Mathematics at the University of Hull (UK) where Emanuele was working toward the development of a hybrid high-k nanocomposite dielectric material for organic electronic applications (organic field effect transistors and hybrid resistive switching memories).

Since 2016, Emanuele is a permanent academic staff member of the department of Physics at the university of Hull, as Experimental Research Officer initially and since 2018 as lecturer in Physics. He is a member of the G. W. Gray Centre for Advanced Materials.

Undergraduate

Physics of semiconductor devices (3rd year)

Nanoelectronics (4th year)

Journal Article

Lyotropic 'hairy' TiO2 nanorods

Cheng, F., Verrelli, E., Alharthi, F. A., Kelly, S. M., O'Neill, M., Kemp, N. T., …Anthopoulos, T. (2019). Lyotropic 'hairy' TiO2 nanorods. Nanoscale advances, 1(1), 254-264. https://doi.org/10.1039/c8na00054a

A label-free aptamer-based nanogap capacitive biosensor with greatly diminished electrode polarization effects

Ghobaei Namhil, Z., Kemp, C., Verrelli, E., Iles, A., Pamme, N., Adawi, A. M., & Kemp, N. (2019). A label-free aptamer-based nanogap capacitive biosensor with greatly diminished electrode polarization effects. Physical chemistry chemical physics : PCCP, 21(2), 681-691. https://doi.org/10.1039/c8cp05510f

Percolation threshold enables optical resistive-memory switching and light-tuneable synaptic learning in segregated nanocomposites

Jaafar, A. H., O'Neill, M., Kelly, S. M., Verrelli, E., & Kemp, N. T. (2019). Percolation threshold enables optical resistive-memory switching and light-tuneable synaptic learning in segregated nanocomposites. Advanced Electronic Materials, 5(7), https://doi.org/10.1002/aelm.201900197

Cover Picture: Ann. Phys. 2'2018

Verrelli, E., Michelakaki, I., Boukos, N., Kyriakou, G., & Tsoukalas, D. (2018). Cover Picture: Ann. Phys. 2'2018. Annalen der Physik, 530(2), https://doi.org/10.1002/andp.201870013

Method to reduce the formation of crystallites in ZnO nanorod thin-films grown via ultra-fast microwave heating

Gray, R. J., Jaafar, A. H., Verrelli, E., & Kemp, N. T. (2018). Method to reduce the formation of crystallites in ZnO nanorod thin-films grown via ultra-fast microwave heating. Thin solid films, 662, 116-122. https://doi.org/10.1016/j.tsf.2018.07.034

Research interests

Emanuele is interested in the experimental and theoretical electronic properties of matter, particularly at the nanoscale and/or when nanoparticles are involved.

Emanuele's research group, the NanoElectronics and Mesoscopic Systems (NEMeSys) group, focuses its attention around the use of nanomaterials for information storage, energy harvesting, energy storage and sensing applications. Find out more here: https://emanueleverrelli.altervista.org

Postgraduate supervision

Physics of electronic devices for information storage, energy storage, energy harvesting, sensing application.