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Abstract

This paper builds a spatial model of trade with supply-chain links to try to understand the
effect of economic links and policies on the spread of the Covid-19 pandemic during the first wave
across NUTS2 UK regions. We find that the fight to reduce infection rates was more successful
in the UK than in the European Union. Our results imply that without the policy reaction in
FEurope, the number of deaths during the first wave of the pandemic would have been about
4,400,000 larger in the European Union and about 1,217,000 higher in the UK, and that these
benefits vary greatly across UK regions. Comparing the effects of the policies implemented in
the EU27 and in the UK, we estimate that, in the absence of European-Union’s anti-Covid-19
measures, the number of deaths in the UK would have been an 80% larger; and that UK anti-
Covid-19 measures saved about 50,000 lives in the European Union and 1,200,000 lives in the
UK.
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1 Introduction

The recent COVID-19 pandemic has ended 4.55 million lives (as of October 1%¢, 2021), forced quar-
antines all over the world, stopped global value chains for a significant amount of time, and created
one of the largest global recessions in recent years. However, as with the spread of other infectious
diseases, its impact in terms of lives and economic activity has varied greatly across regions and
industries (see, e.g., Villani, McKee, Cascini, Ricciardi, and Boccia (2020) and de Vet, Nigohosyan,
Ferrer, Gross, Kuehl, and Flickenschild (2021)). In this paper, we build on the idea that diffusion
of infectious diseases depend on human interactions (e.g., see Fogli and Veldkamp (2021)), and in
particular, on how dense is the economic network of a given area. We consider endogenously de-
termined economic interactions and analyze the effect of the policies adopted to fight the first wave
of the pandemic across different regions in the UK. More specifically, the paper asks the following
questions. What is the contribution of economic linkages to the expansion of the disease? How many

lives have the polices implemented saved?
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The model we develop embeds an spatial economic model in the spirit of Allen and Arkolakis
(2014); Caliendo and Parro (2014) and Caliendo, Parro, Rossi-Hansberg, and Sarte (2017) into the
canonical Susceptible, Infected, Recovered (SIR) model by Kermack, McKendrick, and Walker (1927).
The purpose of the proposed framework is to analyze the two way causation between the spatial
dynamics of an epidemic and the spatial distribution of economic activity. More specifically, the
setup incorporates Ricardian trade ¢ la Eaton and Kortum (2002), and extends the SIR model
in two ways. First, similar to Fernandez-Villaverde and Jones (2020), we consider five population
groups composed of susceptible, vaccinated, infected, resolving, and recovered individuals, and also
account for deaths. Second, we allow for spatial connections that are endogenously determined by
the structure of our economic geography model. The assumption is that when regions trade, people
enter in contact with one another so they put themselves at risk of getting infected or that the virus is
itself transported through the imported goods. As a result of the economic geography model, denser
regions will experience more rapid increase in infections for two reasons. First, within the region,
there are more interactions across individuals and thus, a higher probability of transmission. Second,
the larger a region is, the more it will trade with other regions, and thus, the higher the probability
of transmitting the disease across regions.

In our framework, the economy is composed of a set of locations that produce goods in different
sectors. Fach sector produces three goods: a final product, an intermediate good, and a composite
intermediate or material. The first two can be traded but trade is costly. The third one is only
sold domestically within the region. In addition, following Caliendo and Parro (2014), whereas the
domestic movement of materials is inter-industry, cross-regional trade of intermediate goods is purely
intra-industry.! This feature captures that the latter type of trade represents the largest component
of the trade flows of intermediates. For example, World Bank (2009) finds that, from 1962 to 2006,
worldwide intra-industry trade in intermediate goods increased approximately from 30% to 60% of
total trade. This share equals 42 percent in our European Union 28-country group (EU28) dataset
for the year 2013. What is most important is that these inter- and intra-industry links across sectors
mean that policies and changes that affect a given industry can potentially affect all other sectors
and regions. Our main contribution is to assess how the heterogeneity in production structures and
regional connections affect the spread of the disease and its economic impact.

The model proceeds in two phases. For a given the population composition, the first phase obtains
the distribution of economic activity and bilateral trade shares. In the second phase, we take as given
the bilateral trade shares and the spatial distribution of economic activity along with the disease

ecology to determine how the population composition changes from one week to the next. This

ICompared to the sectoral structure presented by Caliendo and Parro (2014), the main difference with ours is that
we consider that final consumption products can cross regional borders. The reason is that some of them, like tourism,
can be important for the propagation of the virus and are tradable.



creates a loop in which disease dynamics and economic activity affect each other. In particular,
disease prevalence can reduce the labor force in a region through either mortality, morbidity or policy
actions. These shocks affect the level of economic activity and reduce international trade. The
modification of the trade patterns, in turn, has an impact on the spread of the disease by decreasing
the amount of infection “exported” to other regions. These general equilibrium forces resemble a
behavioral response in which agents protect themselves from the infection.

The explicit modelling of the geography is important to understand the disease dynamics.> In
general, those regions that are more isolated will receive and transmit less the infection. As an
example, take the evolution of the pandemic in Spain versus Italy and the UK. The spread of the
infection in Spain was faster in Madrid (a region in the center of the country) and then expanded
throughout the nation. In Italy, the infection started in the north and then moved slowly towards
the south. In the UK, in turn, the disease was more concentrated in the south but, at the same time,
more widespread than in other parts of Europe. Our model addresses these singularities through the
explicit modelling of the geography of trade in Europe.

We calibrate the model to match the distribution of workers and wages across 230 regions from
28 countries in Europe for 10 sectors of production comprising the whole economy and use our
framework to assess through a set of counterfactuals, how policies adopted during the coronavirus
pandemic, which include social distancing and regional lockdowns, have affected the impact of the
disease. We focus on the first wave that goes from February 25" to July 15", 2020.

We find that, even though the incidence of the disease was larger in the UK than in the European
Union, the fight to reduce the infection rates was more successful in the former economy than in the
latter. Our results also imply that without the policy reaction in Europe, the number of deaths during
the first wave of the pandemic would have been about 4,400,000 larger in the European Union and
about 1,217,000 higher in the UK, and that these benefits greatly vary across UK regions. Comparing
the effects of the policies implemented in the EU27 and in the UK, we estimate that, in the absence
of European-Union’s anti-Covid-19 measures, the number of deaths in the UK would have been an
80% larger, which would have implied 34 additional deaths per 100,000 inhabitants. Finally, UK
anti-Covid-19 measures saved 50,620 lives in the European Union and about 1,200,000 lives in the
UK.

The paper proceeds as follows. Section 2 describes the related literature. Section 3 introduces the
model. The calibration of its exogenous variables and parameters is discussed in section 4. Section 5

presents the results. Section 6 concludes.

2Wilson (2010) surveys the literature on the links between geography and infectious diseases and notes that socioeco-
nomic conditions, public health infrastructure, urban versus rural environments, density and mobility of the population
are important factors explaining the types and abundance.



2 Related Literature

Our paper contributes to a large and growing literature on the economic interactions and infectious
diseases. We motivate our modelling strategy based on the empirical evidence supporting the link
between economic interactions and infectious diseases. Several early examples showed the importance
of diseases in developing countries. Chakraborty, Papageorgiou, and Pérez-Sebastian (2010) introduce
rational disease behavior in a general equilibrium framework focused on the effects of the burden of
malaria and the HIV infection on economic development. They show that these diseases can be a
source of economic growth traps. Oster (2012), it turn, shows in the context of Africa, that engaging
in exports leads to a large and significant increase in new HIV infections mainly due to the movement
of truckers.

The connection between trade and infectious-disease transmission is not only prevalent in develop-
ing countries. Adda (2016) provides evidence based on microdata that the expansion of transportation
networks and interregional trade had a significant impact on virus spreading in France. Focusing on
European pandemics going back to the 14*" century, Jorda, Singh, and Taylor (2020) find important
long-run economic consequences even after 40 years. In the context of COVID-19 in the United States,
Desmet and Wacziarg (2021) show that population density of a county is persistently correlated with
its COVID-19 severity. We contribute to this strand of the literature by constructing and calibrating
a model for a set of European regions at different stages of development and assessing the importance
of trade on the spread of the disease.

We are not the first in introducing spatial connections in epidemiological models. Lloyd and May
(1996) and Keeling (1999) are early examples of spatial models of epidemics. Paeng and Lee (2017)
extend the canonical SIR model by including spatial infections assuming that the infection can be
spread in a given radius. In the epidemiological literature, the connection between trade and the
spread of infectious diseases is also known, Mayer (2000) notes that vectors of transmission of dengue
fever or cholera were introduced in the U.S. through imported tires and through dumping bilge water
into the ocean. We depart from this literature by endogenizing the spatial connections within a
quantitative economic geography model, instead of assuming a given radius of infection or stochastic
encounters.

More closely related to our context, Antras, Redding, and Rossi-Hansberg (2020) build a two-
country framework of human interactions in which they combine a gravity equation structure and
an epidemiological model of disease evolution. In their model, the disease spreads as agents travel
from one country to another. We depart from them by building a multi-country and multi-sector
setup with an input-output structure rich enough to capture the transmission of the disease through

bilateral trade across all the network nodes. The inclusion of different sectors can also allow us to



consider a wider array of policies, like selected closures.

We use our model to address the effect of region-specific lockdown policies during the first wave
of the pandemic and the trade-off between the spread of the disease and potential losses from not
engaging in trade. Recent papers study optimal lockdown policies focusing on different group popu-
lations (Acemoglu, Chernozhukov, Werning, and Whinston, 2020), the intensity and duration of the
policy (Alvarez, Argente, and Lippi, 2020), and the distributional consequences (Glover, Heathcote,
Krueger, and Rios-Rull, 2020). More closely to our context, Fajgelbaum, Khandelwal, Kim, Manto-
vani, and Schaal (2020) find that regional-specific lockdowns result in better outcomes than uniform
lockdowns. We depart from them by analyzing the policy effects at a higher regional level, but our
result go in line with theirs. We also depart from them in that we consider deaths as a crucial vector
affecting the labor supply.

Our article also talks to another branch of recent papers focused on consumer behavior and output
responses when faced with an infectious disease (Eichenbaum, Rebelo, and Trabandt, 2020; Guerrieri,
Lorenzoni, Straub, and Werning, 2020; Krueger, Uhlig, and Xie, 2020). Crucially, we depart from
them by looking at the differential effects of having an open economy, multiple regions, and a rich
input-output structure. Cakmakl, Demiralp, Kalemli-Ozcan, Yesiltas, and Yildirim (2021) study
how demand and supply shocks affect global vaccinations and how vaccinations of other countries can
potentially benefit home countries. They do not include, however, endogenous links for the spread of
the infection. We also extend the methodology by Fernandez-Villaverde and Jones (2020) to recover
infection rates based on future deaths and use it to calibrate our model with endogenous links in the

disease.

3 The model

We assume the economy is composed of a set of G geographical locations or regions that belong to
different countries and J sectors or industries. Regions are denoted by g, ¢ and h and sectors by j and
k. In each industry, there is production of a composite intermediate or material, an array of different
varieties of intermediate goods, and a set of different types of final consumption goods. Households
provide labor to the production process. Labor is mobile across sectors and immobile across locations.
All markets are perfectly competitive.

We abstract from the movement of workers across locations, because this aspect does not seem
to have played a significant role during the pandemic due, among other things, to the mobility
restrictions imposed. In the model, the effect of the movement of people to the spread of the virus
will be captured by the level of activity in sectors related to transportation and tourism.

The model offers a rich supply chain structure. Local materials from different sectors are employed



along with the labor input to produce intermediate goods. In the next stage, intermediate goods pro-
duced by the same industry possibly in different locations are combined to generate final consumption
products and a composite intermediate or material. These connections among the different stages of
the production chain can provide amplification effects of trade disruptions.

We suppose that the intermediate goods and final products can be tradable or not, whereas
materials are not tradable. We consider that final consumption products can cross regional borders,
because some of them, like tourism, can be important for the propagation of the virus and are tradable.
Trade in intermediate goods is intra-industry, which represents the largest component of the world
trade flows of intermediates.

Let us now move to describing the model demographics. For simplicity, we omit time subscripts.
The size of the population in region g equals N,. This population is composed of five groups:
susceptible vaccinated and susceptible non-vaccinated people—denoted by V, and Sy, respectively—
who are not infected but can develop the disease; infected individuals, I,; resolving cases R, who
can pass away with probability J or recover with probability (1 — 6);* and recovered Cy, who can

potentially get reinfected. Hence, it must be satisfied that
Ny =Sy +Vy+1I,+ Ry + Cy. (1)

We will consider the possibility that recovered and vaccinated individuals may rejoin the susceptible
non-vaccinated population once the partial immunity acquired by being exposed to the virus or the
vaccine is lost.

Only a fraction I,z from each group H can supply labor services. This fraction lyy will be taken

as exogenous, given by morbidity and policy considerations. Then, the available labor force L, equals:
L, = lgSSg + lgvvg + lg[]g + lgRRg + lgccg. (2)

With these ingredients, the model can be numerically solved through a loop that consists of two
phases. In the first phase, given the population composition, we can obtain the spatial distribution
of economic activity. The second phase takes as given the spatial distribution delivered by the first
phase, along with the disease ecology to determine how the population composition changes from one
day to the next. We consider that the infection can spread within and across locations because of
people contact. Finally, the new population composition feeds again the first phase, and this loop

continues until predictions for the desired number of weeks are generated.

3Resolving cases are infected individuals that cannot infect other people. Fernandez-Villaverde and Jones (2020)
suggest that distinguishing between infection and recovery periods matters for the model to fit the data well with
biologically sensible parameters.



3.1 Phase 1: Economic Allocations Across Space

The first phase of the model determines the underlying economic geography through which the virus

and the economic consequences of policies will potentially spread.
3.1.1 Households

Welfare-maximizing consumers in each location have identical preferences given by:*
J j
%
Wy =11 ()™ 3)
j=1
where

SHGESY!
} ; (4)

ch= [ [ sty
the parameter ag represents the share of sector-j products in total consumption expenditure in
location g, that is, ijl ad = 1; the variable ¢/ (€/) denotes the units consumed in location g of
variety 7 from sector-j (€7 is one among a mass of size one of different varieties); and the parameter
¢J gives the elasticity of substitution between different varieties of sector-j consumption products.

In each location, the population size IV, is divided between workers Ly and non-workers Ny — L.

Fach of the two consumer types has, in principle, a distinct budget constraint, because income
may differ depending on whether they work or not. However, we assume that workers pay lump-
sum unemployment insurance (t,) at the location were they provide labor services, and these taxes
are fully redistributed as unemployment benefits (s;) to the non-working individuals at the local
level, that is, t,Ly, = s4(Ng — Lg). Furthermore, this redistribution is such that their incomes are
equalized, wy — t, = s4; where w, is the wage rate. Which implies that t;, = (Ny — Lg)wy/Ny and
then wy —t, = Lywy/Ny. That is, if there are more individuals unemployed, income per capita falls;
and the opposite occurs if more people work. We also consider that consumers may pay lump-sum
taxes 7, that are directed to provide subsidies to firms. Therefore, letting I, be the fraction of workers
in region g (i.e., l; = Lg/Ny), the budget constraint—which is the same for all consumers—can be
written as:

Iy

+D T .
fy + = g = Z/O P3(€9)ch (@) dsY; (5a)
j=1

where ng (§2) is the price of variety €/ from sector-j consumed in g. The government of region g can
also collect revenues from tariffs (Fy) that are redistributed to the whole local population. The term

D, represents the regional trade deficit. Financing a trade deficit requires the inflow of resources

4The assumption of a unitary elasticity of substitution in consumption might seem restrictive at first. However, it is
worth pointing out that consumption in our framework denotes consumption of gross output, that is, final consumption
expenditure. Herrendorf, Rogerson, and Valentinyi (2013) estimate an elasticity of substitution in the range of 0.85—0.89
but also show that an elasticity of 1 can fit aggregate consumption shares as good as a CES. As the number of sector
increases, our assumption of a unitary elasticity becomes more credible.



from other locations, and this is why Dg appears in the consumer’s budget constrain. Notice as well
that this variable can be used in the experiments as a fiscal policy tool.

Given these preferences, the optimality conditions imply that the share of variety €7 in consump-
tion expenditure on the goods produced by industry j is a function of relative prices and the elasticity
of substitution. In particular,

7 ()l (Q 1=
Py(0)e)()
Pjcg

Pj(©9)
7}

where Pg represents the ideal price index of the sector-j final products, which equals

(7)

1/(1=¢)
| |
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. o
pi— U P (90)1 dgy

0
They also confirm that consumption expenditure on sector j products in a location ¢ is a constant
fraction of total income given by ag.

Taking into account that budget constraint (5a) says that income is fully spent in buying con-

sumption goods, we can write welfare, equation (3), using an indirect utility function approach as:
Yg
W, == 8
g Pg ( )

where y, is income per capita in region g, which equals

F,+D
Yg = lgwg + gN L —1g; (9)
g

and P, provides the ideal consumption price index that households face in location g,

P\
Po=11 (—) - (10)
Note that welfare depends on the fraction of workers [, and on the per-capita trade deficit and tariff
revenue. Thus, shocks to a sector affect welfare through the trade deficit, the tariff revenues and

the price index. Furthermore, constraining the share of working individuals in a region has ceteris

paribus first order effects on welfare.”

5In order to derive (8), notice that the indirect utiity functions for working (WgL) and non-working (WQNL) individuals
are, respectively,

1 Fy+D 1 Fy+D
L NL
Wg:F<wgt9+ g ) ng> and Wy =Fg<sm+ g ; ng>.

Defining NgWy = LgWE + (Ng — Ly )WL as total welfare in a location, Wy is given by
L L
Wy = 2wk + (1 - —9> whE,
Ng Ng

which, substituting each of the indirect utility functions, and recalling that s,, = wy —ty = wgLy/Ng and that Iy
represents the fraction of working individuals in a location g, we get equation (8)



3.1.2 Firms

In each location g, a firm that operates in sector j produces either an intermediate-good variety
(¢)(w?), w € (0,1)), a final-product variety (Q4(€7), @’ € (0,1)), or a composite intermediate or
material (Qé\’tj ). The production of intermediate goods uses labor and materials from other industries,
whereas the production process of final goods and materials demand intra-industry intermediates.
Intermediate-good manufacturers and final-good and material producers in sector j may benefit from
subsidization rates sg and 5@, respectively, which reduce the costs of the different production inputs
in the same proportion. All markets are perfectly competitive and firms maximize profits. We next

describe in more detail each of the different stages of the production chain.
3.1.3 Intermediate goods

A firm in sector j produces a variety w’ of intermediate goods using labor (Lg(wj)) and composite
intermediates from every other sector k (m’;j (w9)) according to the production function:
J
q(w?) = a} (W)L [T mfw)7; (1)
k=1
where ag is sector j’s fundamental productivity in intermediate-goods manufacturing by region g;
zg(wj ) is a random sector-variety-specific productivity shock; and 'yg denotes the share of value
added on gross output. The term affected by the product operator provides the use of materials
from all other sectors, with ’y’gfj representing the expenditure share of the material from sector k
employed in the input composite of the intermediate good produced by industry j. We assume that
Z,gzl VR =1 — fyg. Production functions, then, exhibit constant returns to scale.

Because markets are perfectly competitive and firms are profit maximizers, intermediate-good

prices must equal marginal costs, b7 /[a? 27(w?)]; where bJ gives the cost of a unitary input bundle

once subsidies are taken into account. The cost b/ is common to all varieties and given by

g .
. . oA k ,yk'J
b = (1—s)Yowy® [ (M) (12)
k=1
where the constant Tg equals
Yo g .
. 1 ’ ki —ykd
T = <_]> H (79J) ‘5
79 k=1
P;\’”" is the price of the composite intermediate produced by sector k in region g; and w, denotes the
wage rate in location g. Equation (12) says that the subsidy will translate into lower prices because
it complements market revenues at paying for the inputs. Notice that the term 1 — sg can be written

as a common factor because of constant returns to scale and because production subsidies reduce all

input costs by the same proportion.



3.1.4 Final products

In each sector-region (j,g) pair, a set of final goods indexed by €/ are produced under perfect
competition using intermediate goods from the same sector following a Dixit-Stiglitz aggregator with

a constant elasticity of substitution o7 > 1:

o
1-1/07 ol-1

Qi) = 4123 () [ /0 ) ] (13)

where Ag is the sector-region fundamental productivity in final-goods production; rg (wj) represents

the demand in region g for intermediate good w’ from the lowest-cost supplier, which can belong to
any of the regions.

Profit maximization implies the following demand function for each or the varieties:

(L-spmp ()]
B;

Q)
AYZ5(V)

(14)

)|

where pg (wj ) is the price of intermediate good w’ in location g; and Bg gives the cost of the input
bundle with subsidies already embedded as
1
. . 1 . S 1—0d ] 1-07

Bl =(1—s)) UO ) () dwj} : (15)
Equation (14) implies that the demand of intermediate w’ per unit of final output depends on the
w?’s price relative to the price of the other varieties of intermediates. Consequently, as a response to
the subsidy, the amount for intermediate products demanded can increase, not because of a change
in the price that firms perceived ((1 — /) pJ (w’)), but because of the decrease in the price of the

final output (given by the marginal cost), which can cause an increase in Qé(Qj)
3.1.5 Composite intermediate goods

Production of materials in sector j uses a very similar technology to the one of final goods. In

particular,
o

QM = A Uolrg(wj)ll/“dwﬂ‘ . (16)
That is, it also combines varieties of intermediate goods coming from the same sector. The difference
with equation (13) is that productivity in the case of the production of the composite intermediate
is fully deterministic. Clearly, the demand for intermediate inputs will be very similar to the one

delivered by final goods; in particular,

(-5 p ()] @Y (17)
B; Ay

)= |
Because composite intermediate goods do not engage in inter-regional trade, the price paid for

them by intermediate-goods manufacturers is directly given by the marginal cost of production in the

10



same location. This implies that
. BJ
pMi— 9
g Aj :
g
3.1.6 Inter-regional trade and destination prices

Intermediate goods and final products can travel across locations. Inter-regional trade is costly. Trade
costs combine tariffs and iceberg transportations costs. We consider that tariff may be different for
intermediate and final goods. More specifically, a sector-j intermediate imported by region g from

location 7 involves a trade cost equal to
K = (1+T )déz; (19)

where T ; is the imposed ad-valorem tariff on intermediate goods from sector j. The transportation
cost dZn‘ implies that the arrival of one unit of an intermediate product to g coming from ¢ requires

sending dzi units produced of that product. For the case of final goods, trade costs equal
J _ J \ oJ
Kj = (14+13,) o), (20)

Now ngi represents the tariff on final goods from industry j, and Dzi the iceberg costs related to
trade in final goods. Because we will use changes in iceberg costs as proxies to study the effect of

> 1 for all g and ¢. For the same reason, the

supply-chain disruptions, it is only assumed that dgl, 5i =

usual triangular inequality HJ < Iﬁ;hl gh and K Zi < Kan;h may not hold for all g, 7 and h.
Taking into account these trade costs, the prices at destination of the traded products from the

lowest-cost supplier are the following;:

and
o BIKY.
P/(V)= min { ——Z— 5. (22)
g i€l1,G] | Al Z3(99)

Equations (21) and (22) say that the price at destination will be given by the minimum across locations
of the product between the marginal cost and the trade cost. A more expensive input bundle or higher
trade costs will push the price up, whereas a larger productivity will push it down.

Following Eaton and Kortum (2002), trade in the model obeys a Ricardian motive generated by
a random allocation of productivities across sectors and regions. In particular, the realizations of the
productivity variables zg and Zg for varieties w’ and Q7 follow Fréchet distributions with location
parameter equal to one and sector-specific shape parameters 7 and ©7, respectively. A smaller value

of the shape parameter implies a larger dispersion of the distribution. We suppose that the random

productivity variables are independently distributed across goods, industries and regions, and that

11



1467 > 07 and 14607 > ¢J. Results in Caliendo and Parro (2015) imply that, with these assumptions

on the distribution of efficiencies, the distribution of prices allow rewriting equations (15) and (7) as

. o gin —1/¢7
, ' 1— o 1/(1—0”?) G sz'izn -
352(1—5;)F(1+ 7 ) ; rh , (23)
Py 71/91'
pi-r (1428 o EG: Bl i ' (24)
‘- @ =1 7

where I'(+) is the gamma function.

In the case that a sector is not tradable, which implies that all the varieties of intermediate goods
and consumption products from that sector are bought from domestic producers, Caliendo and Parro
(2015) also show that the relevant price indices amount to imposing that /sj =Ky, I — oo forall i #yg
in equations (23) and (24). Then, we end up with B/ = (1 —s/) ['(1+ (1 — 03)/9])1/(17"])1);/% and
Pj=T(1+(1—¢)/6)/0=<")Bi/Aj.

3.1.7 Expenditure Shares

Let xé and X g be region ¢’s total expenditures on intermediate goods and final products from sector
7, respectively. They are obtained at destination prices, and therefore, include tariff payments.
Define a:zz- and X Zi as the expenditures in location g on sector-j intermediate goods and sector-j final
products, respectively, imported by location g from location ¢. Finally, let 71";2» and Hgi be region g¢’s
total expenditure shares of intermediate goods and final products from sector j exported by location
1 to location g, respectively; that is, 7r = x /a:J and Hgi = X;i/Xg. Caliendo and Parro (2015)

show that

N =07
j (bl 91/“") (25)

.= ,

9i = "q
hZ::l <b.7 /ijh/aj>

()
I, = — -. (26)
> (BiKg,/AL)
h=1

Bilateral trade shares contain important information. First, they are declining on transport costs
and increasing in the productivity of the producer (since this productivity reduces the marginal cost
directly). Second, they include information on the input-output structure of the whole economy
through the prices paid for intermediate inputs. Furthermore, this input-output structure is also
affected by the economic geography, since intermediate inputs can be imported from abroad. In
terms of the effects of policies regarding the control of COVID-19, this gravity equation is potentially

informative for several reasons. It can potentially capture the fact that some sectors might be more

12



affected by social distancing policies, since sectors can differ in their labor input intensities. Dingel and
Neiman (2020) estimate that, in the U.S., the share of jobs that can be done from home significantly
varies across cities and industries and also show that this share is decreasing in the level of development
of the countries. Our model could plausibly capture this. Our model could also show the effects of
how shutting down a certain sector or region, would affect the rest of sectors and locations through
the input-output structure. Furthermore, in the second phase of the model, infections can be spread
through economic linkages, since some sectors are more interconnected than others, those regions that

are more intensive in certain inputs can show significantly faster infection rates.
3.1.8 Market clearing and government and regional deficits

Local labor markets require that the sum of labor employed in the different industries equals the total

amount of labor available in the region. Formally,

J .
Y=L, (27)
j=1

Furthermore, because in equilibrium labor costs must equal a constant fraction ’yg of the value of the

intermediate-goods production, the following condition must hold:

Wy g—z ler;_g (28)

=1
Notice that the right hand side (RHS) of equation (28) adds the expenditures across sectors and

1fsg

regions on intermediate goods manufactured in location g that go to pay the labor input. It also
implies that payments to labor are in part satisfied using the subsidies, in an amount equivalent to a
fraction fygsg /(11— sg) of the revenues from sales. We divide by the tariff to convert each expenditure
amount into the value of production.

In the same manner, the total value of the production of composite intermediates from sector j in
a location g has to be equal to a subsidy-weigted fraction (determined by the 'ygks) of the expenditure

on region ¢’s intermediate goods across sectors and locations. In particular,

J G
Mj AMG _ Ty LiTig
P JQ&Zl_SgZHT?g- (29)

Notice that market clearing conditions (28) and (29) imply as well that the intermediate goods market

clears.

Employing again a production-expenditure equality, market clearing in the location g¢’s final-
goods market requires that the value of the sector-j final-goods produced in g equals the consumption
expenditure across regions on final products from that location. Taking into account that the revenues

from the production activity of the final-product sector fully goes to pay for the intermediate goods
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used as inputs, we can write the market clearing condition as:

M YMj G T
e ks
175g 1—59 Z,:11+Tiﬂg

(30)

The left hand side of equation (30) subtracts the value of materials to provide just the amount of
expenditure in intermediate goods satisfied by final-goods producers. The subsidy 5’; is in the equation

because the expenditure on inputs, =7, equals the market revenues—given by the terms affected by
the sum operator—plus the subsidies received by the industry.
Note that consumers’ expenditure on sector-j products in region-i is a fixed fraction az of their
income. Hence,
X] = alyiN;; (31)
where income per capita y;, given by equation (9), is a function of tariff revenues. We can now write

those revenues using the notation introduced previously as:
J G i 79
R - XTI .
Fp=>Y R S IO (32)
i L+7y, 1+T,

Moving next to the determination of the trade balance, we consider that the regional trade deficit

Dg is given by the sum of the sectoral deficits, Dg. The sectoral deficit Dg equals the value of the
region ¢’s imports of industry-j goods from all other locations minus the value of exports of sector-j
products from location g to all other locations. This is equivalent to imposing that the deficit is given
by the difference between total expenditure by region g on sector-j intermediate and final products
net of tariffs and the total value of production of industry-j intermediate and final goods in location
g. More specifically,

G e T G [ pind i
i — Z :L";ﬂ'gz: N XgHg? B Z CL‘iﬂ'ig N X; Hig ' (33)
o \l+, 14T ) S \1+7, 14T

The second parenthesis gives the value of production by adding across locations the amount spent on
products from the sector-region pair (j, g) net of tariffs.

Therefore, trade balance in location g implies the the sum of the sectoral trade deficits must equal
the regional one, which means :

Dy =Y "Dj. (34)
j=1

It can be shown that the trade balance condition, equation (34) implies that the labor market clears,
that is, equation (28).

Finally, we allow for the possibility that the regional budget deficit, denoted by Dy, is not zero.
Therefore, the following condition must hold:

J & il j T J ;

_ st xpm s XJIT 57 , )
D, = 9 i ig + 9 i7ig + g9 .PM] MJ*TN. 35
I Z ( J 1_551_’_1}]9 Zl—sé g Qg 9Yg (35)

J=1
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That is, if the expenditure in subsidies is larger than the taxes collected to finance them, there will

be a positive budget deficit.
3.1.9 Equilibrium system in relative changes

As in Caliendo and Parro (2014), we solve the model in changes. Let us denote a proportional change
in a variable with a hat (") and the value of the variable next period with a prime ("). Then, for

example, f’j = /Tgl The exogenous shocks that we will consider correspond to new tariffs, ng

and ng, new subsidies to firms, sé and sg , supply-chain disruptions proxied by changes in the trade

costs, aAlZ” and 6§i for g # 1, local production restrictions proxied by a?g, and 0/ _, and confinement

99
policies captured by new stocks of available labor in the region, L'g.
Equations (12) and (18) imply that the gross growth rate in the cost of the intermediate-goods

input bundle equals

A~ 1 - Sgl 'yj J k ‘YQ

b=\ 1= | s I1 (Bg) . (36)
9 k=1

In turn, combining expressions (23) and (25) obtains the change in the cost of the final-goods input

bundle and the export shares of intermediate products as

o
Bi— (ng) lzﬂgi () 0] (37)
g

=1

i i\ —07

. bl i

o= == , (38)
By

respectively; where /%;Z- = (1 + 7'21-) CZ;Z. / (1 + T;i> .The gross growth rate in the sectoral price index

and

and the final-good export shares are delivered by equations (24) and (26) as

a . -1/©7
>, (5243 | )
i=1
and o
(BRI
g

respectively; where IA(;Z = (1 + Tgi') 6;/ (1 + Tgi).
Market clearing conditions can be employed to obtain the future values of the expenditure variables
as a function of the above changes. In particular, market clearing for final-goods, equations (29) and

(30), implies that region g’s next-period expenditure in intermediate goods from sector j is given by:

P B s

.Z‘]I g _ 1 g 4 XJ/# ) (41)
! !/ k/ 2 !

1*% i Sl S e VR 1+Tijg

Notice that 7rk’ and HJ can be written as ﬂfgﬂ'lg and IT/ Hfg, respectively.
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From equations (9), (29), (31), (32) and (35), next-period’s expenditure in final goods from sector

7 equals:

J G ok ke k:/Hk:/
i’ j o kr g " gt kr /
X' =ao [Lg’wg-i-ZZ(ngl_’_Tk{+ngl+Tk,>+D —TN] (42)
X i gt

where

i £ 1+7 1+T; - 1+T 1+Tig
Again, we can write w; as wyWy so that it becomes a function of the changes determined by previous
equations in the system.

The system formed by equations (36) to (43) is undertermined because the number of unknows is
equal to the number of equations plus one. In order to solve it, Caliendo and Parro (2014) assume
that the economy’s trade deficit in each location g is exogenous. We, on the other hand, allow for the
trace deficit to be determined by the model and, instead, required that the wage rate does not vary.
This looks to us more appropriate for the problem that we analyze.

Equations (36) to (43) imply that we do not need to calibrate fundamental productivities and
trade costs to solve the system. We simply start from a baseline scenario that consists of initial

data on regional wages, labor, and trade and budget deficits {wgy, Ly, Dg, Dg} pairwise regional

g=1

HJ J i GG, J

expenditure shares and tariffs in every sector {ﬂ'gl, gi? gl, it gt i1 =15

and the assumption of no
subsidies for firms, sg = sg = 0. We also need to assign values to the labor share in gross output
('yg)7 the share of intermediate goods from sector k employed in the production of sector j ('ygk), the

share of consumption expenditure on sector-j goods (ag), and the shape parameters ¢’ and ©7 of

the Fréchet distributions. With that information on our hands, we consider shocks on the values 7/

gir
Ty SJ ! 53 ! d;l, and/ or Ly, and solve the system going through the following steps.
1. Assume w, = 0 for all g.
2. From equations (36) and (37) obtain {bj Bj}g i1
3. Once we know the cost of the unitary input bundles, we recover the values of {]5 i H;Z}g Cl;z‘] 1,j=1

from equations (39) to (40).

4. Obtain {z’ XJ’} 1 using (41) and (42).

glJ

The above implies that, in this economy, an equilibrium in relative changes can be defined as

follows. Given the new value of the regional labor supply {L,}& g—1, regional deficits {D' D, and

glv

}GGJ

. . . .. . . g1 g/
pairwise regional government policies in every industry {7 Ty} gtz j=1>

9> a competitive equilib-

rium is a set of changes in intermediate-good and final-product price indices in for each sector-location

pair {BJ PJ }? ‘{ j=1, and pairwise regional expenditure shares in every sector {7rgl, H;Z}g Cl; lJ 1,j=1
in addition to new values of the total sector-location expenditure volumes {zJ', X7’ } g—1,j=1, such
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that the optimizing conditions for households, intermediate-product manufacturers, final-good firms
and material producers—which are reflected in equations (12), (18), (23) to (26) and (31)—hold, and

market clearing in all markets is achieved through conditions (29), (30) and (33).

3.2 Phase 2: Infection Dynamics

The dynamics take place at the local level but we allow for possible contagions across locations
depending on effective distance. Typically, epidemiology models characterize the transitions from one
state to another with exogenously given probabilities that refer to the characteristics of the particular
infection. Here, instead, we assume that transition probabilities depend on two factors, one exogenous
that captures the characteristics of the infection, and an endogenous geographic component that
captures how more economically active locations can be more prone to infections since they have
more connections with the rest of locations.

People that work face-to-face, people that work telematically, and people that do not work have
different probabilities of catching the disease due to their different number of encounters with other
people. Additionally, individuals that have recovered from the disease or have been vaccinated can
have a lower probability of becoming infected. We assume that all the infected, regardless of whether
they are in hospital or not, are able to pass the disease to workers; obviously, if the infected is in a
hospital, they can pass the disease mainly to health workers.

We consider two scenarios where people can become infected. First, infections occur locally
through social interactions not related to market activities, like for example visiting relatives at
home or walking in the streets. Second, the virus can be transmitted through a market related activ-
ity, what we call the geographic component, such as workers producing output, consumers enjoying
a beverage in a cafeteria, or product trade. Within this second component, the movement of goods
and services within and between regions can also be an important vector for the transmission of
the disease, because some degree of human interaction is needed to arrange those transactions. For
example, when infected people buy tourism or via infected truck drivers. Actually, Oster (2012) finds
that doubling exports increases HIV infections by 10-70% through truckers in Africa. Importantly,
truck transportation is responsible for the movement of 80% of the world’s goods. In the same vein,
Adda (2016) finds that the expansion of transportation networks and inter-regional trade explains an
important part of the prevalence of infection diseases in France.

Locally, susceptible individuals get infected with probability denoted by (1—x) pg; where k captures
the proportion of infections that arise in market-related contexts (trade or production) and is time-
invariant. The time-varying probability p, provides the likelihood that a susceptible individual gets
the disease if an infected agent is met. The parameter p,, is affected by local policies, local behaviors,

and other non-production related characteristics. The weight of the geographic component, in turn,
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depends on the level of market activity. This can be captured by the expenditure variables :cgg and

X fg Hence, the dynamics for infected people can be written as:

I; = (1—p), + 5,0 (44)
Infected not becoming resolving

where the term ®,, is given by

G
I I; ~
ég = (1- Ii)ngg + K ( g plﬁzAzng>7 (45)
. 9, i=1

Local Component  qeoraphic Component
and the coefficient ¢ gives the fraction of infected that become resolving every period.

According to motion equation (44), the number of infected people tomorrow depends on infected
people today net of those that become resolving cases. The equation also considers that the susceptible
can catch the disease. As expression (45) specifies, this can occur through the local and the geographic
components. The strength of the latter depends on the contagion probability and the prevalence of
the disease in the trade partner and also on the relative level of human interactions in transactions.

In particular, the term Xig represents the level of market interaction between any two regions ¢ and

g, and is given by:
J . , . .
Sy (@, + b+ XD, + X3,)

TG ko ok k- k-
Doh=1 2 k=1 (%g + g, + X5, + Xgh)

It says that the human-interaction level between two economies ¢ and ¢ is a function of bilateral

ig (46)

imports and exports if two different locations are involved or a function the local expenditure volumes
if market activity is fully local. Notice that the bilateral trade volumes in equation (45) are weighted
by a region variable A; that controls for the degree of telematic work, among other things.

The following equations, along with equation (44), describe the full epidemiological model:

Sh=(1—=Xg—®y)S; +a"'V; +aCy (47a)
V)= (1-0a")Vy+ XS, (47b)
Ry = ol + (1= &R, (47¢)
Cp=(1-a%Cy+ (1-6)¢R, (47d)
F) = F, + 6¢R, (47¢)
N} =N, — 6¢R, (47f)

The parameter A\, represents the fraction of the susceptible that are vaccinated during the period in

location g; a. and «,, are the fraction of the recovered and the vaccinated that fully lose immunity,

61t can be show that the basic reproduction number of the disease, Ro, increases in our setup with the level of
trade integration between two regions, X;4. See appendix A for the details. The coefficient Ro represents the average
number of secondary infections produced by a typical case of an infection in a population where everyone is susceptible.
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respectively; the parameter £ reflects the fraction of cases that resolve in a given period, and therefore,
its inverse pins down the average number of periods it takes for a case to resolve; and ¢ relates to
the average number of days (1/¢) a person is infectious.

Equation (47a) says that the size of the susceptible population decreases with the fraction A4
that receives the vaccine and the fraction ®, that gets infected by the Covid-19 virus, but rises with
the recovered and vaccinated that lose their immunity. The vaccinated population, equation (47b),
increases with the fraction of the susceptible that receive the vaccine and decreases with the vaccinated
individuals that lose immunity. In equation (52), in turn, a fraction ¢ of infected individuals become
resolving, and a fraction & of cases are resolved. The number of recovered individuals, equation (47d),
evolves in a similar way as the one of the vaccinated: a fraction a. lose their immunity and some of
the resolving, among the fraction ¢ that survives, recover during the period. The evolution of the
stock of fatalities (F}) is simple, (47¢) implies that the new deaths come from the fraction (6¢) of
resolving that resolve and die. Finally, the evolution of the region’s population is given by equation

(47f), which implies that a fraction 6¢ of the resolving cases die.

4 Calibration

The main source for the calibration of the economic part of the model is Thiessen (2020), which offers
the Rhomolo-MRIO Tables for 2013 published by the European commission. The dataset provides
input-output tables for a set of 268 regions that include 267 EU28 NUTS2-2010 areas plus the rest
of the world (ROW). Nevertheless, due to the lack of sufficiently disaggregated data for the disease
variables, we need to aggregate some locations to the NUTS1 and country levels. After doing so, we
are left with 230 regions (see Table 1). The numbers are disaggregated into ten main sectors of activity
belonging to the NACE Rev2 classification (see Table 2). A summary of the data sources employed
for the calibration of both the economic and disease parameters—and sometimes their values—are
provided in Table 3.

From Thiessen (2020), we also compute ag, that is, the shares of the different sectors in total
consumption expenditure in each location. The same dataset allows deriving estimates of the share
of value added on gross output, yg, and the expenditure share of each material employed in the input

kj 7

composite of the intermediate good produced by other industries, v¢”.

The sector-specific shape parameters 67 and ©7 of the Fréchet distributions related to the pro-

ductivity variables zgl and Zg, respectively, are obtained as follows. Consider two regions, ¢ and g,

and the bilateral trade expenditures between the two, x;i, xf g X gi and X fg Recall that expenditure

shares W;i = xzn/xé and Hzi = Xgi/Xg are given in equilibrium by equations (25) and (26). These

"Due to the large number of observations, these and other parameter and variable values are not reported in the
paper. They are available from the authors upon request.
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expressions imply that we can write:

_gj
dly (ol .
xjgg wiz ’fgvg ’fgi ,
and )
xI x4 (KL KN\
XJ XJ - (KJ Kﬂ) ' (49)
99 99

Equations (48) and (49) provide gravity equations for intermediate and final products, respectively.
They present bilateral trade expenditures as a function of bilateral trade costs. Equations (19)
and (20) say that trade costs are composed of tariffs and iceberg costs. We assume, for the only
purpose of estimating the trade shares, that dgi = Dzi = Vg e“§+’75+8;i; where vy4; = viy represents
symmetric bilateral trade costs like distance (geographical, language, etc...) or belonging to a certain
trade agreement; ;ﬂé and nf capture sector-specific fixed effects in the importer and exporter regions,
respectively; and ezi is a random disturbance. Substituting those expressions for trade costs into (48)

and (49), equalizing tariffs to zero and taking logs, we obtain:
J i
m (2ot ) — ity (—”gi”ig )+ :
The T, VggUii "

J J
In L Xi =—0/In (_’ng'Uz'g ) +&
X34 XJ; VggVii 9

= J J ; ; 0 g
where &g, =g, + €y — 53 — ¢;- Hence, all asymmetric components of the iceberg costs (p?, p17, 7

and

and ni) have cancelled out. In addition, we have equalized tariffs to zero because, in the estimation,
we use data on export spending for the EU28 in 2013 from Thiessen (2020) but exclude the flows
from and to the rest of the world; clearly, trade among EU members are not subject to tariffs or other
trade restrictions.

As proxy for the symmetric component of the bilateral trade costs, we employ distance between
regions obtained from Persyn, Diaz-Lanchas, Barbero, Conte, and Salotti (2019). This dataset gives
estimates of different distance measures between EU regions at the NUTS2 level. We choose the
distance measure that provides arithmetic averages over the geodesic distance between many centroids
for each region-pair. Each region have more than on centroid and then vgy > 1. In the estimation, we

use data on expenditure variables (:c;i and X ;Z) from the original 267 European regions considered
in Thiessen (2020) to maximize the amount of information. The results of the estimation of the trade
elasticities are presented in Table 4. The estimates range from 1.99 to 3.09 for intermediate goods and
from 1.94 to 3.09 for final products. The smallest elasticity corresponds to construction (sector C),
and the largest to public administration, defence, education, human health and social work activities

(sectors O Q).
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We now turn to the parameters that govern the disease dynamics. We set the values for A, from
Dingel and Neiman (2020). In particular, we estimate the percentage of workers in each sector that

can work from home ¢; and then, for each region, we compute A, as

J;J @t X; XJ
which is a weighted average where the weights are sectoral expenditure shares. This takes into account
the sectoral composition of each region.

Parameter k comes from Eichenbaum, Rebelo, and Trabandt (2020) who estimate 17% of infections
related to work environments. We take ¢, £ and § from Fernandez-Villaverde and Jones (2020). The
parameter ¢ is equalized to 0.125, which implies that an individual is infectious for 8 days, and £ to
0.143 so that the average case takes 15 days to fully resolve (8 days infectious plus 7 of resolving).
The mortality rate § is taken which is set to 1%.

Next, since we focus on the first wave, we equalize to zero the vaccination rate A\, and the
immunization loss for vaccinated o". The evidence on reinfection rates for COVID-19 is still unclear.
Regarding reinfection among those not vaccinated, Sheehan, Reddy, and Rothberg (2021) estimate
that the protection from getting infected ranges from 81.8 —84.5%. Taking into account this evidence,
we fix o = 0.168 which implies a protection from the infection of 83.15%.

Finally, we recover the time-variant p,, that is, the probability that a susceptible individual gets

the disease.®

Because some regions do not have data on Covid-19 daily deaths (see Table 5 for
details), we need to split our sample in two groups. The first group is composed of those areas that
do report daily deaths. The second one, in turn, is the set of regions that only report confirmed cases.
For those regions that report deaths, we extend the approach suggested by Fernandez-Villaverde and
Jones (2020), which essentially boils down to obtaining py as a residual using data on deaths only.
This method is explained in detailed in appendix B.”

However, sometimes in a region, we encounter three consecutive days with zero deaths and the
method breaks down. When this occurs, we estimate a constant infection rate p, for the region that
presents the problem as follows. We first make k = 0 to eliminate the geographic component so
that we can obtain a p, in isolation from other regions. Then, we estimate p, by NLLS so as to

minimize the distance of the predicted deaths from the actual death observations. This estimated

average infection rate is assigned (pg = pg) only to the periods in which it is not possible to recover

8For the calibration of the remaining disease parameters and initial values, ROW was assumed to be composed by
China, the U.S. and Switzerland. This means that for both, the EU27 and the UK, we consider at least 70% of the
trade volumes with other areas.

9In the calibration of pg: we eliminate the geographical component, that is, take £ = 0. The reason is that, in many
periods, the large number of zero deaths makes the system where the {pg *_, are obtained jointly (because of the
geographical component) indeterminate. This problem could be partially 901ved through singular value decomposition
and applying a least-squares method. However, the gap between predicted and actual deaths was always significantly
worse when using this alternative procedure.
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it due to the consecutive-zeros problem.

For the regions that do not report daily deaths, we give daily values to p, based on the reported
number of daily infections. To do that, we again first omit the geographical components (i.e., & = 0),
and from equations (44) and (45) recover, for each day and region, a preliminary pgy from the infection
data. This preliminary p, serves to generate the necessary time series of predicted fatalities F; from
the system of equations (44) to (47¢). Once we have the estimated deaths, we follow the method
described in appendix B to get p, that will be used during the simulations.

In order to start the simulations, we need initial values for different variables. Tables 6 and 7
provides some of those initial values for different economic and disease related variables, respectively.
The population size N, at the beginning of the pandemic in each region comes from the same sources as
deaths (see Table 5). To be consistent with the input-output data, the rest of numbers are extracted
from the year 2013. We pick the expenditure shares of intermediate goods and final products by

sector, origin and destination, 7/, and II”

v 4i» from Thiessen (2020). The number of workers, L, are

obtained from different sources. In particular, for the EU28, we use employment by NUTS 2 regions
from regional labour statistics, Eurostat. For ROW, we take the number of persons engaged from
Penn World Tables, 10.0.

Wages, wg, are calculated as total compensation of employees divided by the employment figures.
Total compensation of employees for the EU27 group (EU28 minus the United Kingdom) comes from
the Eurostat regional accounts data; whereas for the UK, we get them from the gross annual pay
for all employee jobs reported by Annual Survey of Hours and Earnings. For ROW, compensation
of employees are directly taken from Thiessen (2020). Lump-sum taxes 7, are calibrated so as to
reproduce the observed total expenditures on final products by region and sector, X g, provided by
Thiessen (2020).

Subsidies for intermediate goods and final-good products/materials, s/ and s/

’ 4, respectively, are

equalized to zero. Bilateral ad-valorem tariff for intermediate and final goods, Tgi and ngi,

respectively,
are zero among EU members. The only tariffs different from zero are the ones related to ROW. We
assign values to the different industries using information from Eurostat (2017) on average import
tariffs imposed by the EU28 to other countries in 2013 and WITS - UNCTAD TRAINS information

(see appendix for details).

5 Results

We focus on the first wave of the Covid-19 pandemic, and more specifically, in the period that goes
from February 25 to July 15, 2020. First, we take a look at the fatality data and the calibrated p,,.

Figure 1 provides the total daily number of deaths in the European Union (EU27) and in the UK.
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This number in our smoothed time series reached a maximum values of 2,867 in the EU27 on April
4thand 887 in the UK on April 11**. That is, the pandemic in the UK evolved with a one-week
lag compared to the European Union. Nevertheless, even the death events were larger in continental
Europe, the incidence of the disease was actually larger in the UK. We can observe this fact in Figure
2 that reports the number of deaths per 100,000 inhabitants. In the UK, this ratio reached 1.25,
whereas in the EU27 its maximum was a bit less than half that number, in particular it was 0.61.

Figure 3 presents the average value of the parameter p, across NUTS2 regions. Remember that
this parameter is calibrated as a residual, and therefore, its values capture the disease ecology but also
the effect of the policies applied to fight the pandemic. We can see in Figure 3 that the probability of
infection reached higher values in the UK than in the European Union. The maximum, in particular,
was 0.20 on March 21°¢ for the former economy and 0.14 on March 227¢ for the latter. However, we
can also see that the reduction was faster and deeper in the UK than in the EU27. That is, policies
seem to have been more successful in the UK, maintaining after April 16th a gap in favor of the UK
of about 2 percentage points.

Let us now have a more disaggregated view of the death data in the UK. Figure 4 plots the number
of deaths in each of the 37 NUTS2 regions in the UK. The largest number of daily cases was achieved
in Inner London-East (UKI2), Greater Manchester (UKD3) and West Midlands (UKG3) with 118,
64 and 57 deaths in one day, respectively. The lowest daily numbers, on the other hand, took place
in North Eastern Scotland (UKM5), Highlands and Islands (UKM6) and Northern Ireland (UKNO)
with 3, 3 and 4 cases, respectively.

Even though the number of deaths and their relative magnitude per 100,000 inhabitants show a
high correlation of 0.561, they do not correlate perfectly. In the second column of results in Table 8,
we see that the largest volumes of deaths per 100,000 inhabitants are found in Greater Manchester
(UKD3), Cheshire (UKD6), Trees Valley and Durham (UKC1) and West Midlands (UKG3) with
rates equal to 93, 90, 87 and 87; and the lowest in Northern Ireland (UKNO), Dorset and Somerset
(UKK2) and Devon (UKK4) where these rates were 6, 19 and 22, respectively.

Our next task is analyzing what the predictions of the model say about the impact of the policy
measures implemented during the first wave and captured by the evolution of the parameter py- We
start by looking at how the model does at matching the fatality data. Figure 5 shows that the model
predictions follow well the trend and its changes in the data. Nevertheless, they tend to underestimate
the number of deaths. Comparing columns one and three in Table 8, we can see that this generates
an error in the predicted total number of deaths of 19.5% and 24.8% for the European Union and
the United Kingdom, respectively. This is due to the method followed to calibrate the parameter Pgs

which does not consider the geographic component of the infection (see appendix for details).
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The first question that we ask is what would have been the cost for the economy in terms of deaths
if no policy had been implemented. At the regional level, the parameter p, reaches it largest values
at the beginning of the infection in the corresponding area, and then goes down due to the policy
actions implemented. Hence, in order to answer the above question, we let the parameter p, remain
constant at its average over the first ten days during which region g reports fatalities. The purpose
of averaging out over ten days is reducing measurement error concerns.

Table 8 in the columns labeled as “Predicted deaths with p constant” gives the results from this
exercise. Without the policy reaction, deaths in the European Union would have been 4,545,222
instead of the predicted 107,112, and 1,248,078 instead of 30,571 in the UK. Which represent an
increase rate of 4,143% and 3,983%, respectively. In terms of the lives saved per 100,000 inhabitants,
the average for the EU27 and the UK equal 202 and 1718, respectively. That is, again the impact looks
stronger in the UK. Across NUTS2 UK regions, there is a relatively high correlation of 0.668 between
the number of deaths and the live saved by policies. More specifically, the largest effect is found
in Berkshire, Buckinghamshire and Oxfordshire (UKJ1) where 2654 lives per 100,000 inhabitants
were saved by the policy measures. Other areas where more than 2000 lives per 100,000 inhabitants
were saved include Cheshire (UKD6), Derbyshire and Nottinghamshire (UKF1), Greater Manchester
(UKD3), Inner London-East (UKI2), West Midlands (UKG3) and Essex (UKH3). The smallest
impact, in turn, is found in Lincolnshire (UKF3), North Eastern Scotland (UKM5) and Dorset and
Somerset (UKK2), where the lives saved are between 849, 861 and 903 per 100,000 inhabitants,
respectively.

In this paper, we are specially interested in measuring the impact of the economic links in the
pandemic. Let us start by looking at the weight of trade with different locations in each of the UK
regions. Table 9 says that the largest share in trade is UK based. Intra-region and cross-UK-region
trade accounts for between 83.0% and 96.2% of total trade. Whether the former form of trade or the
latter one dominated varies widely across regions. For example, Cheshire (UKD6) is the one that
shows the largest reliance in domestic trade: 50.6% is trade within the region and 25.4% comes from
flows with other UK areas. Lincolnshire (UKF3) is, on the other extreme, the one that relies the less
from intra-region flows, only 28.7%, whereas its inter-regional trade with the rest of the UK accounts
for 66.1% of total trade. Trade flows with the European Union also vary significantly across UK
regions. The largest shares of 7.6% and 7.9% are shown by Inner London East and West (UKI1 and
UKI2), whereas the lowest of 3.2% is shown by Eastern Scotland (UKM2). These results tell us that
trade across regions may have had an important effect on the spread of the disease.

A first assessment of the effect of these economic links is provided in the fourth column of results

in Table 8. It gives the percentage contribution of the Geographic component in equation (45) to

24



the generation of infected individuals, and therefore, to the number of fatalities. Recall that the
Geographic component is the one that collects the impact of all economic activity. The weight of this
component in total deaths is, on average, around 10%, and more specifically, 10.2% in the European
Union and 9.7% in the UK. Across UK regions, it reaches the highest values of 19.6 percent in Inner
London-East (UKI2), 17.0% for Eastern Scotland (UKM2) and 16.8% for Devon. The smallest one,
7.8%, corresponds to Kent (UKJ4) and North Eastern Scotland (UKMS5).

The geographic component is also affected by domestic economic activity. To get a closer look at
the effect of the trade relations with other nations. We consider the effect of maintaining p, constant
in the EU27 but not in the UK. This will give us an idea of the impact of the applied European-Union
anti-Covid-19 policies on the UK prevalence. This effect in our model fully runs through economic
activity. The first three columns in Table 10 provide the results of this experiment. Without the
policies implemented in the EU27, the number of deaths in the UK would have been a 80% larger.
The lives saved by those policies amount to 24,434 or 34 per 100,000 inhabitants.

By region, Highlands and Islands (UKMG6) are the one that was benefitted the most, with lived
saved per 100,000 inhabitants equal to 76. Then, Cornwall and Isles of Scilly (UKK3), Cumbria
(UKD1), Northern Ireland (UKNO), North Eastern Scotland (UKM5) and Lincolnshire (UKF3) saved
more than 50 lives each. The ones that benefitted the less were Greater Manchester (UKD3), West
Yorkshire (UKE4), Gloucestershire, Wiltshire and Bristol/Bath area (UKK1) and West Midlands
(UKG3), for which the EU27 policies saved less than 25 lives.

The last three columns in Table 10 focus exclusively on the policies implemented in the UK. They
show the results when we assume that p, changes only in non-UK regions. They say that UK anti-
Covid-19 measures saved 50,620 lives in the European Union, which represents two lives per 100,000
inhabitants. In the UK, this number is much larger; in particular, they saved a total of 1,204,239
lives or 1,700 per 100,000 inhabitants. Berkshire, Buckinghamshire and Oxfordshire (UKJ1) was the
most benefitted, with 2,649 lives saved per 100,000 inhabitants. It was followed by Cheshire (UKD6),
Greater Manchester (UKD3), Derbyshire and Nottinghamshire (UKF1), Inner London-East (UKI2),
West Midlands (UKG3) and Essex (UKH3); all of them with more than 2,000 lives saved by the
fight against Covid-19 in the UK during the first wave. At the bottom of this ranking, we have
Lincolnshire (UKF3), North Eastern Scotland (UKM5) and Dorset and Somerset (UKK2) with 808,
818 and 864 lives saved per 100,000 inhabitants, respectively. Interestingly, the correlation across UK
regions between the lives saved by EU27 and by UK policies is -0.672. The reason is that the EU27
effect on the UK works exclusively through economic links, whereas the one of UK policy affects the

evolution of the disease also through social interaction.
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6 Conclusion

We have built a spatial model of trade with supply-chain links across NUTS2 European regions to try
to understand the effect of economic links and policies in the spread of the Covid-19 pandemic during
the first wave, which goes from the 25" of February to the 15" of July, 2020. Our have mainly focus
on this effect within the UK.

During that period, the incidence the disease was larger in the UK than in the European Union.
However, we find that the fight to reduce the infection rates was more successful in the former
economy than in the latter. More importantly, without the policy reaction in Europe, the number of
deaths during the first wave of the pandemic would have been about 4,400,000 larger in the European
Union, and about 1,217,000 higher in the UK. In terms of the lives saved per 100,000 inhabitants,
the average for the EU27 and the UK equal 202 and 1,718, respectively. On average, the largest
gains where in areas where the volume of deaths was higher, like Berkshire, Buckinghamshire and
Oxfordshire, Cheshire, Greater Manchester, Inner London-East, West Midlands, and Essex.

In terms of the effect of economic activity to the spread of the disease and the impact of the policy
measures, we find that the percentage contribution of the Geographic component to the number of
fatalities is, on average, around 10%. Hence, even though family and social interactions have a larger
weight, the one of economic activity is also significant. We also find that the number of deaths in the
UK in the absence of anti-Covid-19 measures in the European-Union would have been a 80% larger;
they saved about 34 lives per 100,000 inhabitants. In turn, UK anti-Covid-19 measures saved 50,620
lives in the European Union, which represents two lives per 100,000 inhabitants. In the UK, this
number is much larger; in particular, they saved a total of about 1,200,000 lives or 1,700 per 100,000
inhabitants.

We have just started exploiting the rich structure of the model. There is still much work that
can be done to understand the effects of economic links on the spread of the disease and the capacity
of the economy to recover from the recession. In future work, we plan to analyze the effect on the
more recent evolution of the pandemic and on the prospects of the economy to recover of vaccination

policies, telematic work, selected sectoral and regional closures, subsidies and tariffs.
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A The Basic Reproduction Number in Our SVIRCF Model

Following Heffernan, Smith, and Wahl (2005), we can write the equation for infected individuals in

matrix form as:

I'=(I01+F-D)IL; (50)
where I is the identity matrix, I’ is the vector of infections in each location at time ¢ + 1, and F and
D are defined as

s s S o S o s
(1*K)P1]T;]1‘+KA101X11]—VJ; KAngXgleg‘ NAGPGX(HWJC;
F — 7S e (Ur)p B8 Ay p R ST WA e Sa
= 1P1X1g N1 Pg Ng gPgXgg Ng GPGXGg NG
rA )'( Sa PN )’( Sg (1—r) EG_+,;A X Sa
111 X1G N 9PgXgG N, PG NG creXeaNg
%) 0 0
D=0 0 0
0 0 %)

For the two region case, these matrices equal:

F— (lfn)pl%]ernAlplf(n% nA2p2)~(z1%
= & S E o S
wA1py X122 (1=K)py §& +rA205 X2 2

v=(? 0

0«
Let us keep focusing on the simplest case of two regions for which the components of X gi do not
change over time, neither the parameters regarding the disease ecology. In addition, assume that

Sm,t = Nt and there is no vaccine available. Then, we have that the basic reproduction number

Ro is given by the largest eigenvalue of matrix B = FV~!. Matrix B is given by

XllnpA+p(1 *KZ) XgllipA
B = . P N ¥
XlzlipA X22npA+p(1 7KZ)
P ¥

and the basic reproduction number is given by

IipA\/Xlzl — 2X11X22 + 4X12X21 + X222 P (XHKA + XQQH/A — 2K+ 2)
2p " 2¢

(There seem to be subindices missing in pA) which increases with trade integration, since the partial

0=

derivatives are increasing in the trade share with the opposite region.

8R0 _ IipAXgl >0
X2\ /X2 —2X11 Xy + 4K 10X + X3,
aRo _ K:pAXlz >0

OXor @\/Xfl —2X11 Xoo + 4X12X01 + X3,
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B Parameters for the Evolution of the Disease

G
g=1

In order to calibrate {p,,} we follow the method in Fernandez-Villaverde and Jones (2020) and
recover the parameter from deaths numbers. In addition, to ameliorate possible mismeasurement
problems, like for example underreporting during weekends, we first smooth those daily-deaths series
using a moving average of seven days and then a Hodrick-Prescott filter with smoothing parameter
850.

This calibration method is applied to our case as follows. Let us add a time index (t) to the
different variables for mathematical convenience. Additionally, let us take the convention that Z;
provides the value of an arbitrary variable Z at the end of period ¢, and that AZ; 1 = Zyq — Z;."°
Define also fgi+1 = AFgy1, that is, the (smoothed) number of people that died on day t+1 in region
g. For the initial waves of the pandemic, in which there was no vaccine available, we assume Ay =0

for all regions.

From equation (47¢), we can solve for Ry in terms of daily deaths as

Jot+1
Rgt = %g ) (51)
which then implies
A
ARgiy1 = % (52)

Combining equations (47¢) and (52), we can express infected individuals today as a function of

future daily fatalities:

1 /A
Iy = % (% 1 fgm) . (53)

Which implies

1 /A —A
Algyi1 = — ( Jot+s z Jfot+2

op
Using the ratio of (54) to (53), the growth rate of the infected cases can be obtained as:

Algii1r  1/8(Afgtrs — Afgir2) + Afgrso

gt 1/EA fotva + fors1

+ Afgt+2> . (54)

(55)

Next, equation (44), letting Gg¢(I;;) denote the geographic component in equation (45), delivers

:‘iG t(Iit)N + N t AI t+1
1—k + gr\ter) gt 219t (L + .
( )pgt Igt Sgt Igt ¥

Which substituting (53) and (55) becomes:

0pNgt Nyt <1/§(Afgt+3 — Afgti2) + Afgiio

(1= K)pys + kGt (Iir) -
’ e (# + fgt+1> Sgt 1/A fgt42 + forn

+ @) . (56)

10Notice that the timing convention does not have any important implication for our previous discussion. It would
simply mean, for example, that when the susceptible is infected by the virus or vaccinated during period t, it does not
develop the disease or gets immunity until period ¢ 4 1; and that, since Lg¢ is then the number of workers available at
the end of period ¢, all the economic activity takes place at the end of each period.
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To get an expression for the evolution of the susceptible as a function of the fatalities, we can use

(47a), (45) and (53) to obtain the law of motion for this variable as:

Afgte2
3

o 1 Afi
K (ZXiglitpitm ( §t+2 + fit+1)> } +a%Cypy + oV V.

i€G

+ fgt+1) +

14
Sgt+1 = Sgt{l — >\gt — (1 - :‘i)v}]\?t (
g

Note we also need to include the law of motion for vaccinated and recovered individuals which from

(47b) and substituting equation (51) into (47d) yield

Vote1 = (1 - O‘V)Vgt + Agt St (57)

1-6
Cyr1=(1—a%)Cy + ngH—l (58)

Finally, we need initial values for {Iy, Sgo,NgO}gzl. For the stock of fatalities, recovered and
vaccinated, this value is zero, that is, Fyg = Cyo = Vg0 = 0. Knowing the number of fatalities in the
next two periods, we then obtain 5o and Ry from (53) and (51); and the number of susceptible is
directly obtained from (1) taking Ny = Ny for all ¢ from the sources reported in Table 5.

In principle, knowing those numbers, and taking the daily deaths and fraction of vaccinated
{fqt, )\gt}gfl,tzl from the data, we could end up with a system of four times G equations, given by
(56) to (58), and four times G unknowns, {Pgt,Sgt+1,Cgt+1,Vgt+1}§:1 that is solvable. However,
the large number of zero deaths encountered in many periods make the system indeterminate many
times when the geographical component is considered. The solution that we have adopted to solve
this problem is assuming in the calibration of p, that x = 0. In this way, the system for each region
simplifies and becomes independent of other areas. Hence, for each period ¢t € [1,%] and region
g € [1,G], we first recover p,; from (56) and then {Sg i1, Cyit1, Vgrr1}5=1 from the other three

equations.
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Figure 1: Total daily deaths in the EU27 and the UK
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Figure 2: Daily deaths per 100,000 inhabitants in the EU27 and the UK
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Figure 3: Average daily p, in the EU27 and the UK
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Figure 4: Total daily deaths in the UK NUTS2 regiones
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Table 1: NUTS2-2010 regions included in the analysis

Region codes Region names Region codes Region names
AT11 Burgenland (AT) DEFO Schleswig-Holstein
AT12 Niederosterreich DEGO Thiringen
AT13 Wien DKO1 Hovedstaden
AT21 Karnten DK02 Sjeelland
AT22 Steiermark DKO03 Syddanmark
AT31 Oberosterreich DKo4 Midtjylland
AT32 Salzburg DKO5 Nordjylland
AT33 Tirol EEOO Eesti
AT34 Vorarlberg EL11 Anatoliki Makedonia, Thraki
BE1 Région Bruxelles-Capitale / Brussels H G EL12 Kentriki Makedonia
BE2 * Vlaams Gewest EL13 Dytiki Makedonia
BE3 * Région wallonne EL14 Thessalia
BG * Bulgaria EL21 Ipeiros
CYP Kypros EL22 lonia Nisia
Cz01 Praha EL23 Dytiki Ellada
Cz02 Stredni Cechy EL24 Sterea Ellada
Cz03 Jihozapad EL25 Peloponnisos
Cz04 Severozapad EL30 Attiki
CzZ05 Severovychod EL41 Voreio Aigaio
CZ06 Jihovychod EL42 Notio Aigaio
Cz07 Stredni Morava EL43 Kriti
Cz08 Moravskoslezsko ES11 Galicia
DE11 Stuttgart ES12 Principado de Asturias
DE12 Karlsruhe ES13 Cantabria
DE13 Freiburg ES21 Pais Vasco
DE14 Tlbingen ES22 Comunidad Foral de Navarra
DE21 Oberbayern ES23 La Rioja
DE22 Niederbayern ES24 Aragén
DE23 Oberpfalz ES30 Comunidad de Madrid
DE24 Oberfranken ES41 Castilla y Ledn
DE25 Mittelfranken ES42 Castilla-la Mancha
DE26 Unterfranken ES43 Extremadura
DE27 Schwaben ES51 Cataluiia
DE30 Berlin ES52 Comunidad Valenciana
DE40 Brandenburg ES53 Illes Balears
DES0 Bremen ES61 Andalucia
DE60 Hamburg ES62 Regién de Murcia
DE71 Darmstadt ES63 Ciudad Auténoma de Ceuta (ES)
DE72 GieRen ES64 Ciudad Auténoma de Melilla (ES)
DE73 Kassel ES70 Canarias (ES)

DE80 Mecklenburg-Vorpommern F119 Lansi-Suomi

DE91 Braunschweig FI1B Helsinki-Uusimaa
DE92 Hannover FI1C Etela-Suomi

DE93 Lineburg FI1D Pohjois- ja Itd-Suomi
DE94 Weser-Ems FI20 Aland

DEA1 Diisseldorf FR10 fle de France

DEA2 Koln FR21 Champagne-Ardenne
DEA3 Miinster FR22 Picardie

DEA4 Detmold FR23 Haute-Normandie
DEAS Arnsberg FR24 Centre (FR)

DEB1 Koblenz FR25 Basse-Normandie
DEB2 Trier FR26 Bourgogne

DEB3 Rheinhessen-Pfalz FR30 Nord - Pas-de-Calais
DECO Saarland FR41 Lorraine

DED2 Dresden FR42 Alsace

DED4 Chemnitz FR43 Franche-Comté
DEDS5S Leipzig FR51 Pays de la Loire
DEEO Sachsen-Anhalt FR52 Bretagne

* The NUTS2 regions were aggregated to upper levels due to lack of data
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Table 1: NUTS2-2010 regions included in the analysis (continuated)

Region codes

Region names

Region codes

Region names

FRS53
FR61
FR62
FR63
FR71
FR72
FR81
FR82
FR83
HRV
HU
IE
ITC1
ITC2
ITC3
ITCA
ITF1
ITF2
ITF3
ITF4
ITF5
ITF6
ITG1
ITG2
ITH1
ITH2
ITH3
ITH4
ITHS
ITI1
ITI2
ITI3
ITI4
LTU
LUX
LVA
MLT
NL
PL11
PL12
PL21
PL22
PL31
PL32
PL33
PL34
PL41
PL42
PL43
PL51
PL52
PL61
PL62
PL63
PT11
PT15
PT16
PT17

*

*

*

*

Poitou-Charentes
Aquitaine
Midi-Pyrénées
Limousin

Rhone-Alpes
Auvergne
Languedoc-Roussillon
Provence-Alpes-Cote d'Azur
Corse

Croatia

Hungary

Ireland

Piemonte

Valle d'Aosta/Vallée d'Aoste
Liguria

Lombardia

Abruzzo

Molise

Campania

Puglia

Basilicata

Calabria

Sicilia

Sardegna

Provincia Autonoma di Bolzano/Bozen
Provincia Autonoma di Trento
Veneto

Friuli-Venezia Giulia
Emilia-Romagna
Toscana

Umbria

Marche

Lazio

Lietuva

Luxembourg

Latvija

Malta

Netherlands

Lédzkie

Mazowieckie
Malopolskie

Slaskie

Lubelskie
Podkarpackie
Swietokrzyskie
Podlaskie
Wielkopolskie
Zachodniopomorskie
Lubuskie

Dolnoslaskie

Opolskie
Kujawsko-Pomorskie
Warminsko-Mazurskie
Pomorskie

Norte

Algarve

Centro (PT)

Area Metropolitana de Lisboa

PT18
PT20
PT30
RO
ROW
SE11
SE12
SE21
SE22
SE23
SE31
SE32
SE33
S101
S102
SKO1
SK02
SKO3
SK04
UKC1
UKC2
UKD1
UKD3
UKD4
UKD6
UKD7
UKE1
UKE2
UKE3
UKE4
UKF1
UKF2
UKF3
UKG1
UKG2
UKG3
UKH1
UKH2
UKH3
UKI1
UKI2
UKJ1
UKJ2
UKJ3
uKJ4
UKK1
UKK2
UKK3
UKK4
UKL1
UKL2
UKM2
UKM3
UKM5
UKM6
UKNO

*

Alentejo

Regido Autéonoma dos Agores (PT)
Regido Auténoma da Madeira (PT)
Romania

Rest of the world

Stockholm

Ostra Mellansverige

Smaland med 6arna

Sydsverige

Vastsverige

Norra Mellansverige

Mellersta Norrland

Ovre Norrland

Vzhodna Slovenija

Zahodna Slovenija

Bratislavsky kraj

Zapadné Slovensko

Stredné Slovensko

Vychodné Slovensko

Tees Valley and Durham
Northumberland and Tyne and Wear
Cumbria

Greater Manchester

Lancashire

Cheshire

Merseyside

East Yorkshire and Northern Lincolnshire
North Yorkshire

South Yorkshire

West Yorkshire

Derbyshire and Nottinghamshire
Leicestershire, Rutland and Northamptonshire
Lincolnshire

Herefordshire, Worcestershire and Warwickshire
Shropshire and Staffordshire

West Midlands

East Anglia

Bedfordshire and Hertfordshire
Essex

Inner London - West

Inner London - East

Berkshire, Buckinghamshire and Oxfordshire
Surrey, East and West Sussex
Hampshire and Isle of Wight

Kent

Gloucestershire, Wiltshire and Bristol/Bath area
Dorset and Somerset

Cornwall and Isles of Scilly

Devon

West Wales and The Valleys

East Wales

Eastern Scotland

South Western Scotland

North Eastern Scotland

Highlands and Islands

Northern Ireland (UK)
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Table 2: NACE Rev2 sectors included in the analysis

Sections Industries
A Agriculture, forestry and fishing
B_E Industry (except construction and mining)
C Mining
F Construction
G_| Wholesale and retail trade, transport, accommodation and food service activities

J Information and communication

K_L Financial, insurance, and real estate activities

M_N Professional, scientific, technical, administrative and support service activities

o_Q Public administration, defence, education, human health and social work activities

R_U Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies

Table 3: calibration summary

Parameter Source Value | Description

a’g Thiessen (2020) Share of sectorj in total consumption expenditure in location g
}/jg Thiessen (2020) Share of value added in gross output

7/ng Thiessen (2020) Input-output coefficients

Hj, 2l Thiessen (2020) and Persyn et al. (2019) Gravity equation estimation

Ag Dingel and Neiman (2020) Estimated using data on who can work from home and trade shares
K Eichenbaum et al (202) 0.17 | Average infection rate related to work

1] Fernandez-Villaverde and Jones (2020) 0.125 | Average infections per period. Then 1/¢ = 8 days

& Fernandez-Villaverde and Jones (2020) 0.143 | Average number of days to resolve. Then, 1/§ = 7 days

o Fernandez-Villaverde and Jones (2020) 0.01 | Average fatality rate

Ag Direct data on vaccinations Estimated by regions

a’ Several sources 0.159 | Evidence on vaccine effectiveness

a® Several sources 0.168 | Evidence on reinfection rates

Pg Fernandez-Villaverde and Jones (2020) Time varying infection rate calibrated as a residual using the model
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Table 4: sector-specific shape parameters of the Fréchet distributions

Sectors Theta_Intermediates Theta_Finals
A 2.7776 2.7754
B_E 2.8126 2.8036
C 1.9930 1.9428
F 3.0822 3.0822
G_I 2.7182 2.7420
J 2.7242 2.6601
K_L 2.9438 2.9439
M_N 2.8146 2.8298
o_Q 3.0900 3.0903
R_U 3.0257 3.0228

Table 5: death and infection data sources per country

Country Country code Number of regions  Indicator* Source

Austria AT 9 Deaths AGES

Belgium BE 3 Deaths Sciensano

Bulgaria BG 1 Deaths Our World In Data

Croatia HR 1 Deaths Our World In Data

Cyprus cY 1 Deaths Our World In Data

Czech Republic cz 8 Deaths Ministry of Health

Denmark DK 5 Infections Statens Serum Institut
Estonia EE 1 Deaths Our World In Data

Finland FI 5 Deaths Helsing Sanomat

France FR 22 Deaths Government Statistical Office
Germany DE 38 Deaths Robert Koch Institute

Greece EL 13 Infections Ministry of Health

Hungary HU 1 Deaths Our World In Data

Ireland IE 1 Deaths Our World In Data

Italy IT 21 Deaths Dipartimento della Protezion Civile
Latvia LV 1 Deaths Our World In Data

Lithuania LT 1 Deaths Our World In Data
Luxembourg LU 1 Deaths Our World In Data

Malta MT 1 Deaths Our World In Data
Netherlands NL 1 Deaths Our World In Data

Poland PL 16 Deaths Government of Poland
Portugal PT 7 Deaths Ministry of Health

Rest of the World ROW 1 Infections Our World In Data

Romania RO 2 Deaths Our World In Data

Slovakia SK 4 Infections Radovan Ondas**

Slovenia S| 2 Deaths COVID-19 Sledilnik

Spain ES 19 Deaths Narrativa Tracking

Sweden SE 8 Deaths Public Health Agency of Sweden
United Kingdom UK 37 Infections National Health Service

* Population numbers at the time when the pandemic started come from the same sources.

** Radovan Ondas independently compiled a machine readable dataset from the reports published by the National Health
Information Centre. The data is accessible in his GitHub Repository: https://github.com/radoondas/covid-19-slovakia/
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Table 6: values for certain economic variables in the initial period

Employment  Wages Tax

Regions (,000) (,000)  per capita
AT11 134 26.5821 -7.2633
AT12 782.3 30.3157 -12.2176
AT13 796.1 51.7636 -15.2691
AT21 257.5 339612 -11.4699
AT22 584.6 34.5074 -10.7816
AT31 719.2 37.1969 -17.7329
AT32 273.8 39.2586 -22.7968
AT33 369.8 34.6403 -20.1357
AT34 187.4 36.0726 -23.4575
BE10 412.6 96.7746 -15.8892
BE20 2774.6  41.1520 -15.0507
BE30 1343.2 36.6868 -2.7465
BG0O 2934.9 5.6618 -3.4726
CYP 365.1 22.8508 -10.6850
Cz01 649.4 27.0746 -22.3040
Cz02 626.2 10.4313 -4.1040
Cz03 576.1 11.7867 -4.4123
Cz04 504.8 10.1360 -3.7595
Cz05 689.5 11.2797 -2.7009
Cz06 7929 12.6581 -5.7872
Ccz07 554.2 11.2322 -2.1210
Cz08 544.1 12.3791 -4.6760
DE11 2024.8 46.4185 -19.4286
DE12 1382.3 40.4823 -7.5977
DE13 1141.4 33.8518 0.6914
DE14 943.3  37.0806 1.3750
DE21 2376.5 449057 -30.3063
DE22 626 31.7061 3.1370
DE23 566.2 34.7086 4.3142
DE24 542.5 33.6627 6.0943
DE25 864.6 41.9546 3.7367
DE26 674.6 34.3751 3.4374
DE27 919.4 34.9232 0.7611
DE30 1604.1 36.5346 -9.2814
DE40 1200.1 24.8842 -19.8731
DE50 299.1 51.2956 2.6229
DE60 885.6 54.9938 -18.5391
DE71 1912.2 459633 -37.1080
DE72 503.5 33.9545 5.7147
DE73 591.4 37.5593 4.6166
DE80 7419 26.4571 1.9778
DE91 734  40.7403 2.9661
DE92 1013.5 35.9496 -0.4578
DE93 804.8  24.6945 2.3407
DE94 1214.6  30.5228 -5.3343
DEA1 2364 40.9027 -31.2466
DEA2 2013.5 40.1806 -29.2722
DEA3 1209.3 32.5144 -4.4063
DEA4 968.6  35.6644 0.6930
DEAS 1623  36.6406 -3.5710
DEB1 717 30.4163 2.2064
DEB2 264.5 27.3227 5.4179
DEB3 981 34.4872 -1.8957
DECO 464.8 37.4714 -16.7558
DED2 743.8  29.6917 -2.8087
DED4 688.1 26.9450 -1.2953
DED5 474.6  30.7257 -11.4894
DEEO 1048.9 26.4915 -0.6728

Employment  Wages Tax
Regions (,000) (,000)  per capita
DEFO 1336.9 29.4306 -1.0281
DEGO 1067.1  26.5895 0.7949
DKO1 858.4 61.7700 -17.9257
DK02 367.7 37.3745 -10.0792
DK03 538.9 47.2973 -21.9573
DK04 606 46.6467 -19.7161
DKO5 265.2 45.5326 -22.0819
EEOO 621.3 13.8727 -8.7107
EL11 187.4  13.9749 -1.2872
EL12 553.6  15.5690 -2.5216
EL13 77.1 22.5546 -10.0949
EL14 235.5 13.8855 -2.7245
EL21 103.9 13.5129 -1.5752
EL22 75.2  13.7773 -6.0525
EL23 202.7 13.8518 -3.9175
EL24 171.3 15.6482 -7.4496
EL25 191.3 13.4721 -3.3042
EL30 1312 22.3998 -11.0830
EL41 65.6 14.6520 -1.1546
EL42 122.8 17.2248 -7.8097
EL43 214.8 14.1792 -5.4247
ES11 1006.4  23.0889 -9.8079
ES12 369.4 25.6050 -8.7703
ES13 222.5 23.6975 -7.9710
ES21 873.6 33.2188 -10.6814
ES22 258.1 30.6304 -11.0285
ES23 1245 24.6482 -13.3054
ES24 515.3 27.5587 -11.0604
ES30 2718.1 35.5904 -12.6868
ES41 916.4 24.1794 -7.9359
ES42 712.3  21.3244 -8.2121
ES43 339.7 21.7748 -4.2174
ES51 2969.6 29.9354 -11.5671
ES52 1771.2  23.2228 -8.0898
ES53 475.8 23.4256 -10.6539
ES61 2571.5 23.6645 -6.0529
ES62 514.9 23.3022 -12.7789
ES63 25.6  33.8906 -0.3815
ES64 24.6  31.5407 0.0139
ES70 729.7 24.0643 -7.0549
FI19 600.6 38.1363 -73.2872
FI1B 796.1 48.4994 1.8983
FI1C 502.2 37.1915 3.0587
FI1D 542.9 36.3672 1.1617
FI20 15 47.6613 6.3367
FR10 5277.6 64.7503 -17.3524
FR21 506.9 37.2000 -5.5220
FR22 728 34.1721 -1.1953
FR23 717.5 39.0263 -0.7105
FR24 1000.7 36.9178 -5.4984
FR25 578.5 35.3476 0.5107
FR26 639.7 36.3674 -0.8022
FR30 1492.6  40.0367 -9.7134
FR41 904.6  33.8760 -3.6439
FR42 809.4 38.1816 -1.5240
FR43 468.6  34.3149 -1.5676
FR51 1509.7 38.0740 -5.1852
FR52 1336.1  35.4520 -6.3303
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Table 6: values for certain economic variables in the initial period (continuated)

Employment  Wages Tax Employment  Wages Tax

Regions (,000) (,000)  per capita Regions (,000) (,000) per capita
FR53 714.1  33.6521 -2.7788 PT18 298.5 14.7598 -5.8608
FR61 1351.6  36.9430 -1.0702 PT20 99.2 16.3219 -6.2235
FR62 1243.7 38.0533 -5.1936 PT30 108.8 16.3767  -17.9137
FR63 2959 32.8944 0.3624 ROO00 8549.1 5.3487 -4.7475
FR71 2699.9 41.4589 -6.7661 ROW 942281.9 6.3787  -21.9740
FR72 537.3 35.2944 -0.4261 SE11 1133.4 57.6199  -32.2830
FR81 955.4 36.5596 -12.5510 SE12 750.4 43.4934  -10.3679
FR82 1955.2  40.4663 -2.1720 SE21 3949 429335 -16.4701
FR83 62.2 76.1150 5.8688 SE22 672.4 43.0339 -14.3611
HRV 1524  13.2857 -4.5796 SE23 951.4 452112  -19.2227
HU00 3892.8 11.4695 -4.0549 SE31 387.3 40.2808  -14.9350
IEOO 1888.5 37.0222 -12.2011 SE32 172.5 41.1574  -18.1878
ITC1 1770.7 28.0785 2.6194 SE33 242.2 44.0754  -19.6394
ITC2 54.7  29.5649 1.1561 SI01 473.5 16.2699 -6.0152
ITC3 603.1 28.4112 2.5062 S102 432.4  23.9815 -8.1984
ITC4 4221.5 32.7454 3.3762 SK01 315.2 25.2848  -37.2071
ITF1 4859 24.7781 0.5496 SK02 824.8 9.9025 -4.6217
ITF2 98.6 23.2282 -1.1462 SK03 563.9 10.0251 -3.7930
ITF3 1580.5 25.2469 1.0020 SK04 625.4 8.9685 -2.8448
ITF4 1158.4  25.0275 -1.9092 UKC1 491.7 17.5744 -3.1072
ITF5 178.6  23.4306 -1.7435 UKC2 641.4 18.3381 -4.3161
ITF6 518.2 24.3568 -5.9952 UKD1 240.1 17.3029 -5.7346
ITG1 1334.7 26.0958 -0.9188 UKD3 1215.3  20.4385 -5.6784
ITG2 546.3 24.2010 -1.0885 UKD4 639.2 18.0588 -5.2991
ITH1 243 34.1951 -149.0669 UKD6 431.8 20.0000 -482.5718
ITH2 229.2 31.3578 -133.8738 UKD7 657.2 18.0000 -192.0488
ITH3 2043.1 27.8717 -21.2817 UKE1 4229 17.9032 -5.4246
ITH4 495.5 30.2206 -64.0954 UKE2 386.9 17.8377 -6.8607
ITHS 1904.1 29.6837 -19.8107 UKE3 621.8 16.2434 -4.0021
ITI1 1534.1 26.0740 -22.6776 UKE4 1006.7 20.3470 -5.9306
ITI2 349 24.1860 -80.4305 UKF1 973.3 18.1107 -4.7019
ITI3 615.7 24.4328 -62.6243 UKF2 816.7 20.1079 -5.2289
ITI4 2225.5 33.1702 -6.1929 UKF3 342.8 13.8482 -6.0697
LTU 1292.8 10.6252 -3.6102 UKG1 642.1 18.5413 -7.2492
LUX 238.7 94.9323 -29.9842 UKG2 754.6  15.9560 -5.0271
LVA 893.9 10.5386 -9.1278 UKG3 1136.4 20.7606 -5.1592
MLT 181.6 18.9572 -21.8877 UKH1 1155.3  19.0563 -6.9705
NLOO 8285.3 39.1563 -15.0150 UKH2 885.8 23.2023 -5.7939
PL11 1247.7 6.8668 -1.8066 UKH3 839.2 16.7792 -4.3132
PL12 1044 6.1360 -10.7953 UKI1 1524.1 63.3986  -51.8633
PL21 1314.9 8.9553 -3.7728 UKI2 22385 19.7223 -4.3527
PL22 1903.3 10.4714 -6.6889 UKl 1184.5 30.0798 -10.9109
PL31 957.8 5.9883 -0.7577 uKJ2 1360.9 20.6045 -5.7982
PL32 800.1 7.5038 -0.5484 UKJ3 938.1 21.0874 -5.7748
PL33 554 6.1924 -1.1444 uKJ4 806.6 16.6803 -4.7454
PL34 453.3 7.1266 -0.9235 UKK1 1171.8 20.7576 -7.0298
PLA1 1365.6 9.8957 -6.1769 UKK2 615.3 15.6705 -4.1230
PLA2 572.4 9.2231 -3.3541 UKK3 238.8 13.0924 -3.5742
PL43 404.7 7.8447 -2.4368 UKK4 512.6 16.1075 -4.3383
PL51 1055.6 11.6458 -6.7876 UKL1 851.5 13.3424 -3.0907
PL52 346.1 9.0924 -3.1672 uKkL2 535.7 18.6897 -6.4178
PL61 761.4 8.4268 -2.2920 UKM2 962.8 18.7273 -3.5270
PL62 528.7 7.4999 -1.8660 UKM3 991.2 19.9211 -2.4920
PL63 894.1 9.4477 -4.9896 UKM5 251.7 39.1981  -22.0718
PT11 1543.9 14.4577 -5.5697 UKM6 233.6  14.2053 -7.6387
PT15 186.9 14.6988 -9.9246 UKNO 797.2 15.9449 -3.0347
PT16 1059.2 12.8656 -5.9253

PT17 1132.9 26.1299 -10.9246
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Table 7: values for certain disease-related variables in the initial period

Date pande_ Fraction non- Date pande_  Workers

Region  mic starts telematic workers  Population  Infected Region micstarts face2face Population Infected

AT11 27-Mar-20 0.643 291942 103 DEFO 16-Mar-20 0.656 2881926 2471
AT12 19-Mar-20 0.636 1665753 1949 DEGO 21-Mar-20 0.661 2158128 2216
AT13 14-Mar-20 0.593 1867582 1853 DKO1 28-Feb-20 0.599 1807404 5
AT21 30-Mar-20 0.634 561077 411 DKO02 3-Mar-20 0.649 832553 4
AT22 17-Mar-20 0.645 1237298 2240 DKO3 1-Mar-20 0.651 1217224 4
AT31 23-Mar-20 0.646 1465045 1532 DK04 15-Jul-20 0.654 1304253 1
AT32 26-Mar-20 0.619 549263 1098 DKO5 8-Mar-20 0.659 587335 4
AT33 21-Mar-20 0.619 746153 2603 EEOO 30-Mar-20 0.652 1315635 1611
AT34 29-Mar-20 0.640 388752 616 EL11 12-Oct-20 0.632 602799 4
BE10 10-Mar-20 0.606 1199095 4804 EL12 15-Jul-20 0.630 1880122 3
BE20 14-Mar-20 0.650 6526061 25756 EL13 10-Aug-20 0.635 271488 3
BE30 15-Mar-20 0.658 3626571 23733 EL14 29-Jul-20 0.637 725874 4
BGOO 27-Mar-20 0.646 7101859 1337 EL21 28-Aug-20 0.630 335250 3
CcYp 29-Mar-20 0.606 854802 328 EL22 9-Nov-20 0.588 205431 3
Cz01 24-Mar-20 0.590 1280508 2613 EL23 15-Aug-20 0.630 663970 3
Cz02 30-Mar-20 0.666 1338982 832 EL24 8-Sep-20 0.643 555761 3
Cz03 6-Apr-20 0.668 1217411 630 EL25 9-Aug-20 0.630 579182 3
Cz04 30-Mar-20 0.660 1118126 913 EL30 9-Nov-20 0.607 3773559 11
Cz05 1-Apr-20 0.672 1508527 426 EL41 14-Aug-20 0.598 203700 4
Cz06 1-Apr-20 0.662 1687764 734 EL42 11-Oct-20 0.554 338383 3
Cz07 30-Mar-20 0.666 1217623 439 EL43 9-Aug-20 0.580 632674 4
Cz08 30-Mar-20 0.662 1209879 604 ES11 15-Mar-20 0.640 2710216 4876
DE11 6-Mar-20 0.667 4098278 3280 ES12 18-Mar-20 0.632 1034302 4226
DE12 12-Mar-20 0.658 2779314 2525 ES13 20-Mar-20 0.635 581490 3846
DE13 8-Mar-20 0.667 2239734 3829 ES21 7-Mar-20 0.635 2167323 5877
DE14 15-Mar-20 0.668 1834567 5410 ES22 16-Mar-20 0.644 640353 6582
DE21 13-Mar-20 0.645 4633323 10328 ES23 11-Mar-20 0.648 312624 2601
DE22 16-Mar-20 0.665 1219397 5266 ES24 7-Mar-20 0.639 1316072 1332
DE23 15-Mar-20 0.662 1098378 6771 ES30 7-Mar-20 0.587 6476838 73177
DE24 15-Mar-20 0.662 1062394 3236 ES41 13-Mar-20 0.642 2435951 21224
DE25 19-Mar-20 0.653 1750059 6600 ES42 11-Mar-20 0.637 2040977 20921
DE26 11-Mar-20 0.660 1309209 2450 ES43 15-Mar-20 0.645 1077525 7275
DE27 13-Mar-20 0.663 1857991 2273 ES51 9-Mar-20 0.625 7441284 22909
DE30 17-Mar-20 0.620 3574830 6113 ES52 12-Mar-20 0.633 4935182 13246
DE40 24-Mar-20 0.639 2494648 4757 ES53 19-Mar-20 0.583 1150962 3553
DE50 25-Mar-20 0.642 678753 1018 ES61 13-Mar-20 0.630 8408976 11181
DE60 12-Mar-20 0.626 1810438 2122 ES62 22-Mar-20 0.649 1472991 3989
DE71 19-Mar-20 0.626 3951234 5456 ES63 4-Apr-20 0.637 85034 108
DE72 23-Mar-20 0.662 1043643 1030 ES64 3-Sep-20 0.639 84946 73
DE73 22-Mar-20 0.661 1218211 3269 ES70 16-Mar-20 0.590 2154978 3137
DE80 26-Mar-20 0.653 1610674 847 FI19 5-Mar-20 0.620 1380593 5986
DE91 17-Mar-20 0.659 1922674 3850 FI1B 26-Feb-20 0.653 1638293 5548
DE92 19-Mar-20 0.656 2139976 3143 FI1C 6-Mar-20 0.666 1159174 3869
DE93 25-Mar-20 0.660 1703945 1811 FI1D 3-Mar-20 0.669 1781976 3197
DE94 14-Mar-20 0.665 2506155 2101 FI20 21-Mar-20 0.661 29214 334
DEA1 11-Mar-20 0.637 5190790 3618 FR10 18-Mar-20 0.630 12174880 84443
DEA2 6-Mar-20 0.610 4439416 4521 FR21 19-Mar-20 0.660 1334453 5846
DEA3 17-Mar-20 0.660 2619376 4106 FR22 18-Mar-20 0.659 1934171 12914
DEA4 17-Mar-20 0.664 2054205 1620 FR23 19-Mar-20 0.656 1865332 3153
DEAS 18-Mar-20 0.668 3586313 4113 FR24 22-Mar-20 0.651 2582302 7177
DEB1 16-Mar-20 0.659 1657077 1421 FR25 23-Mar-20 0.653 1477290 2811
DEB2 25-Mar-20 0.657 528728 587 FR26 18-Mar-20 0.656 1637366 6448
DEB3 20-Mar-20 0.665 2045138 2280 FR30 18-Mar-20 0.648 4087132 7110
DECO 17-Mar-20 0.635 996651 2914 FR41 18-Mar-20 0.656 2330674 24535
DED2 19-Mar-20 0.634 1600155 1517 FR42 18-Mar-20 0.650 1888937 34338
DED4 21-Mar-20 0.641 1454144 3704 FR43 18-Mar-20 0.658 1179900 7869
DED5 26-Mar-20 0.623 1027484 669 FR51 21-Mar-20 0.650 3765798 6748
DEEO 20-Mar-20 0.662 2236252 1689 FR52 18-Mar-20 0.645 3323130 3074
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Table 7: values for certain disease-related variables in the initial period (continuated)

Date pande_ Fraction non- Date pande_  Workers

Region  mic starts telematic workers  Population  Infected Region micstarts face2face Population Infected
FR53 21-Mar-20 0.657 1811206 2696 PT18 24-Jun-20 0.666 718087 788
FR61 22-Mar-20 0.652 3422179 4015 PT20 10-Apr-20 0.667 245283 377
FR62 19-Mar-20 0.637 3046465 1854 PT30 13-Oct-20 0.652 254876 0
FR63 22-Mar-20 0.658 735908 928 RO00 21-Mar-20 0.651 19643949 8707
FR71 18-Mar-20 0.641 6621564 20221 ROW 25-Feb-20 0.635 1719968968 340
FR72 26-Mar-20 0.649 1365263 1584 SE11 26-Mar-20 0.580 2269060 25240
FR81 18-Mar-20 0.681 2815936 4746 SE12 26-Mar-20 0.623 1664145 7369
FR82 19-Mar-20 0.639 5047942 8072 SE21 26-Mar-20 0.635 847667 1350
FR83 19-Mar-20 0.651 334283 1388 SE22 26-Mar-20 0.615 1483018 1042
HRV 27-Mar-20 0.628 4154213 1139 SE23 26-Mar-20 0.616 1992116 2741
HUOO 20-Mar-20 0.659 12797637 1440 SE31 26-Mar-20 0.629 848451 2820
IEOO 21-Mar-20 0.611 9568766 7688 SE32 7-Apr-20 0.614 374245 1370
ITC1 5-Mar-20 0.653 4392526 10749 SE33 5-Apr-20 0.623 516451 1578
ITC2 17-Mar-20 0.657 126883 3391 SI01 23-Mar-20 0.670 1091159 1414
ITC3 4-Mar-20 0.652 1565307 5372 S102 28-Mar-20 0.643 974736 984
ITC4 20-Feb-20 0.650 10019166 65345 SK01 18-Aug-20 0.614 641892 22
ITF1 14-Mar-20 0.658 1322247 4935 SK02 15-Mar-20 0.665 1830751 3
ITF2 19-Mar-20 0.661 310449 464 SK03 25-Aug-20 0.667 1342287 9
ITF3 13-Mar-20 0.659 5839084 5535 SK04 10-Aug-20 0.669 1620413 9
ITF4 7-Mar-20 0.667 4063888 1735 UKC1 15-Mar-20 0.627 1194437 5
ITF5 26-Mar-20 0.668 570365 858 UKC2 13-Mar-20 0.624 1446249 5
ITF6 18-Mar-20 0.679 1965128 2213 UKD1 9-Mar-20 0.631 498641 4
ITG1 16-Mar-20 0.665 5056641 4126 UKD3 9-Mar-20 0.620 2789735 6
ITG2 20-Mar-20 0.665 1653135 2285 UKD4 13-Mar-20 0.631 1487102 6
ITH1 13-Mar-20 0.635 524256 3648 UKD6 15-Mar-20 0.592 924261 5
ITH2 14-Mar-20 0.635 538604 6967 UKD7 12-Mar-20 0.598 1541473 6
ITH3 2-Mar-20 0.640 4907529 4053 UKE1 18-Mar-20 0.635 929189 4
ITH4 9-Mar-20 0.636 1217872 3352 UKE2 15-Mar-20 0.626 818141 4
ITH5 28-Feb-20 0.641 4448841 12423 UKE3 8-Mar-20 0.627 1389426 5
ITI1 11-Mar-20 0.639 3742437 8173 UKE4 12-Mar-20 0.622 2301000 5
ITI2 19-Mar-20 0.637 888908 2023 UKF1 6-Mar-20 0.631 2187643 5
ITI3 3-Mar-20 0.636 1538055 5090 UKF2 10-Mar-20 0.627 1812852 5
ITI4 7-Mar-20 0.639 5898124 3241 UKF3 16-Mar-20 0.639 747996 4
LTU 25-Mar-20 0.681 5695808 568 UKG1 9-Mar-20 0.631 1338055 5
LUX 18-Mar-20 0.598 590667 1509 UKG2 10-Mar-20 0.631 1613788 5
LVA 11-Apr-20 0.649 1950116 499 UKG3 6-Mar-20 0.623 2883905 6
MLT 10-Apr-20 0.599 460297 99 UKH1 10-Mar-20 0.628 2493326 5
NLOO 9-Mar-20 0.636 21063191 15453 UKH2 8-Mar-20 0.622 1841673 5
PL11 2-Apr-20 0.663 4943240 466 UKH3 10-Mar-20 0.627 1813609 6
PL12 25-Mar-20 0.611 10682968 2133 UKI1 1-Mar-20 0.593 3206667 6
PL21 1-Apr-20 0.652 3339803 730 UKI2 4-Mar-20 0.612 5267064 12
PL22 28-Mar-20 0.657 4510528 2415 UKJ1 5-Mar-20 0.612 2385514 5
PL31 29-Mar-20 0.673 4225574 369 UKJ2 7-Mar-20 0.617 2871387 5
PL32 1-Apr-20 0.671 4169444 630 UKJ3 6-Mar-20 0.617 1973952 5
PL33 15-Apr-20 0.669 2475036 288 UKJ4 11-Mar-20 0.627 1824794 6
PL34 15-Apr-20 0.675 2313894 74 UKK1 9-Mar-20 0.621 2474784 5
PL41 31-Mar-20 0.669 3457473 2145 UKK2 17-Mar-20 0.630 1322286 4
PL42 18-Apr-20 0.666 1681246 547 UKK3 14-Mar-20 0.630 560526 4
PL43 22-Jul-20 0.672 1004892 497 UKK4 11-Mar-20 0.628 1180517 3
PL51 24-Mar-20 0.659 2866218 649 UKLl 10-Mar-20 0.630 1960764 6
PL52 6-Apr-20 0.672 950710 782 UKL2 9-Mar-20 0.628 1158491 6
PL61 7-Apr-20 0.669 2060575 979 UKM2 9-Mar-20 0.624 4176323 5
PL62 10-Aug-20 0.677 1410641 232 UKM3 8-Mar-20 0.625 4712134 5
PL63 21-Apr-20 0.656 2285800 1012 UKMS5 19-Jul-20 0.614 491323 2
PT11 20-Mar-20 0.646 3584575 7664 UKM6 13-Mar-20 0.634 469420 4
PT15 1-Apr-20 0.641 441469 403 UKNO 15-Mar-20 0.630 2764538 4
PT16 20-Mar-20 0.656 2243934 3630

PT17 20-Mar-20 0.603 2821349 2762
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Table 8: results

Deaths during first wave Predicted deaths Predicted deaths with p constant

Region code Region name Total per 100,000 Total % Geografic Total % increase Lives saved*
EU27 European Union 133063 28 107112 10.2% 4545222 4143% 202
UK United Kingdom 40672 57 30571 9.7% 1248078 3983% 1718
UKC1 Tees Valley and Durham 1037 87 737 9.9% 19622 2564% 1581
UKC2 Northumberland and Tyne and Wear 1095 76 827 12.8% 22484 2619% 1497
UKD1 Cumbria 382 77 323 8.6% 6302 1854% 1199
UKD3 Greater Manchester 2587 93 1660 9.8% 63906 3749% 2231
UKD4 Lancashire 1016 68 762 9.4% 22772 2889% 1480
UKD6 Cheshire 829 90 505 9.1% 21494 4158% 2271
UKD7 Merseyside 1283 83 920 10.1% 29038 3057% 1824
UKE1 East Yorkshire and Northern Lincolnshire 546 59 409 11.7% 10115 2374% 1045
UKE2 North Yorkshire 464 57 353 11.5% 13982 3865% 1666
UKE3 South Yorkshire 1120 81 788 8.7% 24589 3021% 1713
UKE4 West Yorkshire 1440 63 1052 11.2% 46595 4330% 1979
UKF1 Derbyshire and Nottinghamshire 1416 65 977 10.6% 49536 4970% 2220
UKF2 Leicestershire, Rutland and Northamptonshire 1250 69 863 8.6% 35603 4026% 1916
UKF3 Lincolnshire 262 35 237 10.5% 6585 2680% 849
UKG1 Herefordshire, Worcestershire and Warwickshire 942 70 651 11.6% 25729 3852% 1874
UKG2 Shropshire and Staffordshire 1121 69 815 9.4% 29821 3560% 1797
UKG3 West Midlands 2496 87 1737 13.4% 63443 3553% 2140
UKH1 East Anglia 1248 50 996 10.2% 41422 4060% 1621
UKH2 Bedfordshire and Hertfordshire 1414 77 1051 9.7% 27648 2532% 1444
UKH3 Essex 1443 80 992 11.3% 38064 3737% 2044
UKI1 Inner London - West 2063 64 1891 9.1% 58138 2974% 1754
UKI2 Inner London - East 4155 79 2849 19.6% 116507 3989% 2158
UKJ1 Berkshire, Buckinghamshire and Oxfordshire 1138 48 710 15.8% 64021 8921% 2654
UKJ2 Surrey, East and West Sussex 1544 54 1144 13.5% 50870 4346% 1732
UKJ3 Hampshire and Isle of Wight 1001 51 772 11.9% 31357 3960% 1549
UKJ4 Kent 1254 69 879 7.8% 31617 3498% 1684
UKK1 Gloucestershire, Wiltshire and Bristol/Bath area 1088 44 859 15.8% 41523 4731% 1643
UKK2 Dorset and Somerset 256 19 271 11.2% 12210 4407% 903
UKK3 Cornwall and Isles of Scilly 247 44 245 8.5% 7465 2943% 1288
UKK4 Devon 262 22 261 16.8% 15294 5760% 1273
UKL1 West Wales and The Valleys 975 50 776 9.8% 27188 3402% 1347
UKL2 East Wales 576 50 462 9.7% 14964 3142% 1252
UKM2 Eastern Scotland 1002 24 952 17.0% 54301 5603% 1277
UKM3 South Western Scotland 1268 27 1237 10.7% 82975 6609% 1735
UKM5 North Eastern Scotland 139 28 148 7.8% 4378 2851% 861
UKM6 Highlands and Islands 150 32 145 9.4% 5164 3454% 1069
UKNO Northern Ireland (UK) 163 6 318 14.2% 31357 9763% 1123

* Lives saved per 100,000 inhabitants
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Table 9: intra- and inter-regional trade for the UK NUTS2 regions

Region code Region name Domestic Rest of UK EU27 ROW
UKC1 Tees Valley and Durham 0.3077 0.6048 0.0684 0.0192
UKC2 Northumberland and Tyne and Wear 0.3759 0.5335 0.0767 0.0139
UKD1 Cumbria 0.3565 0.5788 0.0600 0.0047
UKD3 Greater Manchester 0.4075 0.5355 0.0444 0.0126
UKD4 Lancashire 0.3055 0.6381 0.0498 0.0066
UKD6 Cheshire 0.5960 0.2538 0.0435 0.1067
UKD7 Merseyside 0.5622 0.3392 0.0608 0.0378
UKE1 East Yorkshire and Northern Lincolnshire 0.3799 0.5651 0.0486 0.0064
UKE2 North Yorkshire 0.3473 0.6043 0.0420 0.0064
UKE3 South Yorkshire 0.3082 0.6175 0.0705 0.0038
UKE4 West Yorkshire 0.3824 0.5594 0.0514 0.0069
UKF1 Derbyshire and Nottinghamshire 0.3326 0.6125 0.0435 0.0113
UKF2 Leicestershire, Rutland and Northamptonshire 0.3917 0.5518 0.0469 0.0096
UKF3 Lincolnshire 0.2870 0.6605 0.0471 0.0055
UKG1 Herefordshire, Worcestershire and Warwickshire 0.3577 0.5881 0.0445 0.0097
UKG2 Shropshire and Staffordshire 0.3399 0.6222 0.0336 0.0043
UKG3 West Midlands 0.3854 0.5293 0.0609 0.0244
UKH1 East Anglia 0.4131 0.5061 0.0470 0.0338
UKH2 Bedfordshire and Hertfordshire 0.3542 0.5449 0.0715 0.0294
UKH3 Essex 0.3100 0.5926 0.0712 0.0262
UKI1 Inner London - West 0.4516 0.3885 0.0786 0.0814
UKI2 Inner London - East 0.3336 0.4973 0.0755 0.0936
UKJ1 Berkshire, Buckinghamshire and Oxfordshire 0.4515 0.4487 0.0618 0.0380
UKJ2 Surrey, East and West Sussex 0.3566 0.5038 0.0703 0.0693
UKJ3 Hampshire and Isle of Wight 0.4294 0.5032 0.0404 0.0271
uKJ4 Kent 0.3450 0.5663 0.0561 0.0326
UKK1 Gloucestershire, Wiltshire and Bristol/Bath area 0.3963 0.5291 0.0412 0.0334
UKK2 Dorset and Somerset 0.3043 0.6347 0.0387 0.0223
UKK3 Cornwall and Isles of Scilly 0.3592 0.5865 0.0446 0.0097
UKK4 Devon 0.3456 0.5941 0.0380 0.0223
UKL1 West Wales and The Valleys 0.3028 0.6213 0.0464 0.0295
UKL2 East Wales 0.3308 0.6266 0.0352 0.0073
UKM2 Eastern Scotland 0.4013 0.5328 0.0322 0.0337
UKM3 South Western Scotland 0.4299 0.5073 0.0323 0.0304
UKM5 North Eastern Scotland 0.6156 0.3434 0.0347 0.0063
UKM6 Highlands and Islands 0.3984 0.5451 0.0469 0.0096
UKNO Northern Ireland (UK) 0.4262 0.4928 0.0480 0.0330
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Table 10: Additional results with p constant

Predicted deaths with p constant in EU27

Predicted deaths with p constant in UK

Region code Region name Total % increase Lives saved* Total % increase Lives saved*

EU27 European Union 4485729 4088% 200 157732 47% 2

UK United Kingdom 55005 80% 34 1234811 3939% 1700
UKC1 Tees Valley and Durham 1146 56% 34 19367 2530% 1560
UKC2 Northumberland and Tyne and Wear 1314 59% 34 22135 2577% 1473
UKD1 Cumbria 609 89% 57 6137 1803% 1166
UKD3 Greater Manchester 2185 32% 19 63746 3739% 2225
UKD4 Lancashire 1178 55% 28 22501 2854% 1462
UKD6 Cheshire 733 45% 25 21427 4145% 2264
UKD7 Merseyside 1424 55% 33 28803 3032% 1809
UKE1 East Yorkshire and Northern Lincolnshire 791 93% 41 9714 2276% 1001
UKE2 North Yorkshire 661 87% 38 13801 3814% 1644
UKE3 South Yorkshire 1189 51% 29 24371 2993% 1697
UKE4 West Yorkshire 1541 47% 21 46383 4310% 1970
UKF1 Derbyshire and Nottinghamshire 1572 61% 27 49362 4952% 2212
UKF2 Leicestershire, Rutland and Northamptonshire 1459 69% 33 35357 3998% 1903
UKF3 Lincolnshire 616 160% 51 6282 2552% 808
UKG1 Herefordshire, Worcestershire and Warwickshire 1089 67% 33 25535 3822% 1860
UKG2 Shropshire and Staffordshire 1249 53% 27 29621 3535% 1785
UKG3 West Midlands 2370 36% 22 63226 3540% 2132
UKH1 East Anglia 2096 110% 44 40850 4003% 1598
UKH2 Bedfordshire and Hertfordshire 1694 61% 35 27255 2495% 1423
UKH3 Essex 1878 89% 49 37781 3709% 2028
UKI1 Inner London - West 3087 63% 37 57793 2956% 1743
UKI2 Inner London - East 4202 47% 26 116046 3973% 2149
UKJ1 Berkshire, Buckinghamshire and Oxfordshire 1302 83% 25 63897 8903% 2649
UKJ2 Surrey, East and West Sussex 2075 81% 32 50388 4304% 1715
UKJ3 Hampshire and Isle of Wight 1427 85% 33 30980 3911% 1530
UKJ4 Kent 1710 95% 46 31275 3459% 1666
UKK1 Gloucestershire, Wiltshire and Bristol/Bath area 1398 63% 22 41123 4685% 1627
UKK2 Dorset and Somerset 937 246% 50 11700 4219% 864
UKK3 Cornwall and Isles of Scilly 597 143% 63 7280 2867% 1255
UKK4 Devon 728 179% 40 14927 5620% 1242
UKL1 West Wales and The Valleys 1442 86% 34 26730 3343% 1324
UKL2 East Wales 841 82% 33 14680 3080% 1227
UKM?2 Eastern Scotland 2262 138% 31 53068 5474% 1248
UKM3 South Western Scotland 3396 175% 46 82058 6535% 1715
UKM5 North Eastern Scotland 401 170% 51 4168 2709% 818
UKM6 Highlands and Islands 503 246% 76 4893 3268% 1011
UKNO Northern Ireland (UK) 1903 499% 57 30150 9384% 1079

* Lives saved per 100,000 inhabitants
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