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1. Introduction 

Maritime shipping is a crucial to international trade as it is used by more than 80 percent of the 
world merchandise trade (Foresight, 2017) using different types of sea vessels including 
container or LoLo vessels (Lift on Lift off), RoRo vessels (Roll on Roll Off), reefer vessels 
and tankers, bulk and break vessels and other multi-purpose vessels. Furthermore, maritime 
shipping can also be one of two types of namely, short sea shipping and deep-sea shipping1.  
Short sea shipping is transport of goods along relatively short distances for example along the 
coast of a continent, crossing channels, straits or smaller seas, whereas deep sea shipping is the 
transport of freight across oceans.  England, being an island, it is very dependent on short sea 
services for trade with Europe as illustrated by the various short sea routes in Figure 1. For 
example, there are more than 50 daily crossings between Dover and the Continent. In 2017, it 
is estimated that 85% of UK’s international trade, or 380.2 million tonnes of freight tonnage2, 
was moved by sea.  Of that total, 71.9%, (273.5 million tonnes), was moved by short sea 
shipping. 

Consider the case of short sea shipping where a vessel continuously shuttles between two ports 
on a fixed schedule as is the case between the ports of Calais and Dover.  In this paper we 
consider the problem of determining the minimum number of ships required to maintain regular 
schedules for short sea shipping given a maximum waiting time for loads at the ports and look 
at special cases where the schedule is also circular. This is a crucial problem for short sea 
shipping for the UK.  Social distancing due to Covid-19 and Brexit have greatly changed the 
capacity of some ports and shipping lines need to find alternative ports to introduce new 
services to maintain the same service levels and freight capacity. 

  

                                                
1 https://www.opensea.pro/blog/short-sea-vs-deep-sea 
 
2 
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data
/file/762200/port-freight-statistics-2017.pdf 
 



 
Figure 1: Major Ferry routes serving the UK(ref https://www.discoverferries.com/destinations/) 

The paper gives a new concise mathematical model for finding the optimal number of ships for 
the general case where loads arriving at a port should wait no more than W periods before it 
leaves on a vessel. We also show that the general problem is NP-Complete, but a special case 
with no waiting time, i.e. W=0 can be easily solved in polynomial time. 

 
  



2. Problem description, notation and hardness 
 
2.1. The 2-Port, Circular-Schedule, Fleet Design (2-PCSFD) problem 

Assume the case of a vessel that shuttles between two ports 𝑃𝑜𝑟𝑡	1 and 𝑃𝑜𝑟𝑡	2 on a continuous 
basis. The travel time, 𝑇𝑅, between the two ports is known and constant. Let 𝐿𝑈 be the loading, 
unloading times, refuelling and other maintenance time incurred at each port. Assume that 𝐿𝑈 
is also constant and is the same at each port. This means that if 𝑡 is the departure time of the 
ship at 𝑃𝑜𝑟𝑡	1  then the ship will next depart from 𝑃𝑜𝑟𝑡	1	 at time 𝑡 + 2(𝑇𝑅 + 𝐿𝑈) and again 
at 𝑡 + 4(𝑇𝑅 + 𝐿𝑈) and so on. We call this a regular schedule.   

Let 𝑝 = 1, 2	 be the two ports and let 𝑙 be a load arriving at a port at a time period 𝑡. Each load 
consists of a number of standardised containers or trailers.  Let 𝑊 be the maximum number of 
period that a load can wait at the ports including the period in which it arrives. Hence loads 
arriving within time period 𝑡 must depart by the end of period 𝑡 + 𝑊 − 1.	  Furthermore, we 
assume that the load pattern arriving at a port repeat in time after every T period. The latter is 
referred to as the load cycle. 

For short sea shipping, as is the case when crossing the English Channel (see Figure 1), T is 
usually a day and  𝑇𝑅 + 𝐿𝑈 ≤ 24. In this paper, we restrict the analysis to the case where 𝑇𝑅 +
𝐿𝑈	 ≤ 𝑇.  Let’s define a circular ship schedule as one where the ship departure times from the 
ports are repeated over after a certain time period. In general, circular schedules can be 
achieved after T periods if 8

89:8;
 is an even number or 2T if 8

89:8;
 is an odd number (see 

Appendix for proof).  For example, if T = 24 and 𝑇𝑅 + 𝐿𝑈 = 12, and the ship departs 
	𝑃𝑜𝑟𝑡	1	at 6:00 am, then it will depart again from 𝑃𝑜𝑟𝑡	1  the next day at 6:00 am. Here, 
circularity is achieved over a period of 24 hrs.  On the other hand, if 𝑇𝑅 + 𝐿𝑈 = 24	hrs, a ship 
departing 𝑃𝑜𝑟𝑡	1 at 6:00 am will depart from 𝑃𝑜𝑟𝑡	2 at 6:00 am the next day and again from 
𝑃𝑜𝑟𝑡	1 at 6:00 am on Day 2. Here circularity is achieved over a period of 48 hrs. 

The problem we consider is to find the minimum number of vessels required to maintain a 
circular schedule between the ports to transport all the loads to their destination, given vessel 
capacities and a maximum waiting time for the loads. We refer to this problem as the 2-Port, 
Circular-Schedule, Fleet Design (2-PCSFD) problem.  

2.2. Notation and Assumptions 

Let 

𝑇𝑅: Travel time between two ports; 

𝐿𝑈: Time to load, unload and service the ship at port; 

𝑊: Number of maximum waiting periods for a load arriving at port before it leaves on a vessel; 

𝐶=: Capacity of ship 𝑖; 



𝑇: Planning horizon to achieve circular regular schedule; 

𝑇𝐸: The horizon period on which the problem will be solved;  

𝑄AB: is the quantity of load 𝑙 = 1,… , 𝐿;   

𝑞A=FG : binary variable which equals to 1 if load 𝑙 is departing on ship 𝑖 at time 𝑡 from 𝑝 =
𝑝𝑜𝑟𝑡(𝑙), otherwise 0; 

𝑥=FG: binary variable which equals to1 if ship 𝑖 departs port 𝑝 at time 𝑡, 0 otherwise; 

𝑦=FG : binary variable which equals to1 if ship 𝑖 arrives at port 𝑝 at time 𝑡, 0 otherwise; 

𝑛=: binary variable which equals to1 if ship 𝑖 is used. 

2.3. Time-Space network: 

Fleet design and transport optimization problem with schedules usually embeds a time-space 
network for investigation of vessels trajectory and this technique has been widely used (Steinzen 
et al., 2010, Zhang et al., 2017).  Let 𝐺 = (𝑉, 𝐸) be our directed time-space network in which 
𝑉 is the set of vertices and 𝐸 is the set of directed edges. There is a vertex 𝑣 ∈ 𝑉 for each port 
p in each time period t, 𝑣F,G and let functions 𝑝𝑜𝑟𝑡(𝑣) = 𝑝 and 𝑡𝑖𝑚𝑒(𝑣) = 𝑡.  We have three 
types of edges in the network. The first type of edge represents a vessel crossing between two 
ports and connects 𝑣F,G and 𝑣Q,G:89  where 𝑝 ≠ 𝑑.	 The length of this edge is equal to the 
crossing time, TR, between two ports. The second edge represents the loading/unloading time 
of a vessel at a port. It connects an arrival vertex 𝑣F,G to a departure vertex 𝑣F,G:T; and has a 
length of LU.  

The third type of edge represents waiting times for loads arriving at a port. A load arriving at 
time 𝑡 will wait for a maximum of W periods and hence there is a series of edges connecting 
vertex 𝑣F,G to each of the vertices 𝑣F,GU where 

 𝑡B = {𝑡 + 1… 𝑡 +𝑊 − 1},     if 𝑡 + 𝑊 − 1 ≤ 𝑇  

and if 𝑡 +𝑊 − 1 > 𝑇,  then   

𝑡B = {𝑡 + 1… , 𝑡 +𝑊 − 1|	if		𝑡 +𝑊 − 1 ≤ 𝑇} 	∪	 ]1,…𝑚𝑜𝑑	(G:^_`
8

)a 	𝑖𝑓	𝑡 + 𝑊 − 1	 ≤ 𝑇c,  

Figure 2 gives an example of a time-space network where TR= 3, LR = 2 and W=4. The 
crossing for a vessel leaving the first port at time 1 is represented by the edge from 𝑣`,` to 𝑣d,e. 
Its loading/unloading time by the edge from 𝑣d,e to 𝑣d,f when it is ready to depart. A load 
arriving at port 1 in time 1 could wait until period 4 and hence the dotted arcs from 𝑣`,`. 
Moreover, the figure shows a load arriving at the end of the time horizon, i.e. 𝑡 = 𝑇, can wait 
up to periods 1, 2 and 3 on the next day.  



 

Figure 2 Example of a time-space network 

 
2.4. Hardness of the problem 

The decision version of the minimum number of the vessels for a regular service between two 
ports is in NP. We demonstrate the NP-completeness of the problem by reducing the NP-
complete Bin Packing Problem (BPP) to our problem.  



The decision version of the BPP is defined as follows: Given integer sets  𝑁 = {1,2,⋯ , 𝑛}, a 
number k and constant 𝑐 where 𝑤A ≤ 𝑐,  ∀	𝑙 ∈ 𝑁, can the set N be partitioned into k distinct 
subsets 𝑆`,𝑆d,, …, 𝑆m,, such that, ∑ 𝑤AA∈op ≤ 𝑐 for i=1,..k.   

Theorem: The decision version of the 2-PCSFD problem is NP-complete.  

Proof:  Given BPP, construct an instance ℑ  of the 2-PCSFD problem with a homogenous fleet 
of 𝑁 vessels of capacity	𝐶 = 𝑐.  Set 𝑇𝑅 = 𝑛	and 𝐿𝑈 = 0. The time-space network is set as 
follows: we have two ports, P1 and P2 with a load cycle T = 2n with loads potentially arriving 
in each of time period t, 𝑡 = {1, . . , 𝑇}.  Since 8

89:8;
= 2, circularity is achieved after T periods.  

Loads 𝑙	 = 1,⋯ , 𝑛 arrive at P1 in time period 𝑡 = 1, and the quantity of each load 𝑄AB = 𝑤A.  
Set the waiting time 𝑊 = 𝑛, meaning that loads can wait a maximum of 𝑛 periods, inclusive 
of the period in which it arrived, before being picked up by a vessel.   
It can be observed that by construction of ℑ: 

1. All loads must be picked by time 𝑛 at latest; 
2. Because of the traveling time, vessels leaving P1 at any time 𝑡 ≤ 𝑛 will only return to 

P1 after time 𝑡 > 𝑛; 
  

The vessels in 2-PCSFD are equivalent to the bins BPP. Let 𝑧 be the minimum number of 
vessels in a solution to ℑ and let function 𝑎𝑟𝑔A(𝑞A=FG) be defined as follows: 

𝑎𝑟𝑔A(𝑞A=FG) 	= v𝑙,									if	𝑞A=FG = 	1	in	the	solution	to	ℑ	
𝑛𝑢𝑙𝑙,																																					𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

    (15) 

 

The solution to the BPP is constructed by setting 𝑘 = 𝑧 and sets	𝑆`,𝑆d,, …, 𝑆m, are defined as 
follows: 𝑆=, = {𝑎𝑟𝑔A(𝑞A=`G)} for 𝑖 = 1,⋯ , 𝑘,  𝑙 = 1,⋯ , 𝑛 and 𝑡 = 1,⋯ , 𝑇.  Note that 
∑ 𝑤AA∈op ≤ 𝑐 for 𝑖 = 1,⋯ , 𝑘,  is guaranteed since any vessel 𝑖  in 2-PCSFD departs P1 only 
once in time horizon t=1,⋯ , 𝑛. Thus, BPP can be solved by solving the 2-PCSFD.  

For the rest of the study we will assume the following: 

Assumption 1: 𝑇𝑅 + 𝐿𝑈 ≤ 𝑇 and 8
89:8;

 is integer.  

Furthermore, if 8
89:8;

  is even, circularity is reached after T periods and after 2T periods if it 

is odd. Having 8
89:8;

  as an integer yields circular schedules which is a nice property to have 
as passengers can easily remember the schedules. This is always possible in practice by 
adjusting 𝑇𝑅 + 𝐿𝑈 either by increasing or decreasing the speed of the ship or by adjusting LU, 
the time spent at the ports between arrivals and departures. 

Assumption 2: 𝐶= ≥ 𝑀𝑎𝑥A(𝑄AB) 



The ship capacity is greater than the maximum quantity of a load. Note that this is not as 
restrictive as it sounds since loads can be broken to accommodate ship sizes but there must be 
an adequate number of ships of the right size so that all the loads are carried within the 
maximum waiting time. This means that there could be two or more loads of different quantities 
to be picked up at a port in the same time period t.  

3. Solution Approaches 

We present a binary mathematical model for solving the 2-PCSFD problem and look at the 
special case for finding regular circular schedules under maximum load waiting times. Let 𝑖 be 
a distinct ship and assume that we have 𝑁 ships.  

3.1. General Mathematical Model 

𝐵𝑀𝑃:	𝑀𝑖𝑛	∑ 𝑛=�
=                                                                                          (2) 

s.t. 

𝑛= ≥ 𝑥=FG																																							𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑖, 𝑝, 𝑡              (3) 

𝑥=FG + 𝑥=FUG ≤ 1																											𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑖, 𝑝 ≠ 𝑝B, 𝑡	                           (4) 

𝑦=FG + 𝑦=FUG ≤ 1																										𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑖, 𝑝 ≠ 𝑝B, 𝑡	                                         (5) 

Enforcing regular schedules: 

𝑥=FG = 𝑦=FU(G:89)																										𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑖, 𝑝 ≠ 𝑝B	𝑎𝑛𝑑	𝑡                        (6) 

𝑦=FG ≤ 𝑥=F(G:T;)																										𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑖, 𝑝, 𝑡	 ∈ 𝑇𝐸	                  (7) 

𝑥=FG + ∑ 𝑥=FGG:d89:dT;_`
G ≤ 1										𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑖, 𝑝 ≠ 𝑝B	𝑎𝑛𝑑	𝑡	                    (8) 

Enforcing max waiting time of loads and capacity of ship:  

⎩
⎪⎪
⎨

⎪⎪
⎧
� � 𝑞A=FG

(GU:�_`)

G�GU

�

=�`

= 1						𝑖𝑓	𝑡 ≤ 𝑇,																	

� � 𝑞A=F��Q(G8)

(GU_8:�_`)

G�`

�

=�`

= 1				𝑖𝑓	𝑡 > 𝑇,								

𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑙, 𝑡B = 𝑎𝑣𝑎𝑖𝑙(𝑙), 𝑝 = 𝑝𝑜𝑟𝑡(𝑙)		(10)	 

 

∑ 𝑞A=FGT
A�` × 𝑄AB 				≤ 𝐶=																				𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑖, 𝑡	𝑎𝑛𝑑	𝑝			            (11) 

𝑥=FG ≥ 𝑞A=FG																																	𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑙, 𝑖, 𝑡	𝑎𝑛𝑑	𝑝 = 𝑝𝑜𝑟𝑡(𝑙)	                    (12) 



𝑥=FG, 𝑦=FG , 𝑛=, 𝑞A=FG 		 ∈ (0,1)                      (13) 

The objective function minimizes the number of ships. Constraint (3) ensures that ship 𝑁= is in 
service if it is to depart port 𝑝 at time 𝑡.   Constraints (4) and (5) guarantee that a ship cannot 
depart from or arrive at the two ports at the same time.  Constraints (6) and (7) are used to 
enforce regular schedules.  If a ship 𝑖 departs port 𝑝 at time 𝑡, i.e.    𝑥=FG, then it should arrive 
at p’ at t+TR. Similarly, if ship 𝑖 arrives at a port 𝑝 at time 𝑡 (𝑦=FG), then it should depart at 
t+LU.   Constraint (8) guarantees that if ship i leaves port p at time t, then it cannot depart again 
from port p until t+2(TR+LU). Equation (9) ensures that load 𝑙 available the port p=port(l) at 
time t’=avail(l), is carried by ship i at port p by time t’+W-1, where W is the max waiting time.  
Equation (10) guaranties that the load available to be shipped at time t’=avail(l), is being 
carried out by one and only one of the ships departing port p=port(l) on or before time t’+W-
1.  Equation (11) makes sure that the total load on ship i departing port p at time t is less than 
the capacity of the ship.  Equation (12) makes sure, that if the load l is being put on the ship i 
departing the port p at time t, then there is a departure for the ship i from port p at time t. 

By assumption 1, circularity is achieved after either T or 2T periods. To solve BMP, a time 
interval of  𝑇𝑅 + 2𝐿𝑈 must be added to T to make the solutions feasible for loads arriving at a 
port between the 𝑇 − (𝑇𝑅 + 𝐿𝑈) and T according to equation 5 and 6. Hence, the effective 
planning horizon, TE,  over which BMP will be solved is 

𝑇𝐸 = �
1,2,⋯ , (24 + 𝑇𝑅 + 2𝐿𝑈	)	𝑖𝑓	 de

T;:89
	𝑖𝑠	𝑎𝑛	𝑒𝑣𝑒𝑛	𝑛𝑢𝑚𝑏𝑒𝑟

1,2,⋯ , (48 + 𝑇𝑅 + 2𝐿𝑈)		𝑖𝑓	 de
T;:89

	𝑖𝑠	𝑎𝑛	𝑜𝑑𝑑	𝑛𝑢𝑚𝑏𝑒𝑟		
            (14) 

Note that less or equal sign is required in equation (7) because the effective planning horizon 
ends at some point and the ship will not depart if it cannot reach the other port before the end 
of the planning horizon. 

3.2. Numerical Examples 

Consider the example shown in Figure 3 where there is a total of 18 loads 𝑙 = (1,… ,18) to be 
loaded from both ports 𝑃𝑜𝑟𝑡	1	 and 𝑃𝑜𝑟𝑡	2	  in a period of T=24 hours. Here, loads 𝑙 =
(1,… ,10)  are to be shipped from 𝑃𝑜𝑟𝑡	1	 in different time periods and loads 𝑙 = (11,… ,18)  
are to be shipped from 𝑃𝑜𝑟𝑡	2  in different time periods (see Figure 3).  Notice that the 
numbering of the load, 𝑙, uniquely defines the time at which the load can be shipped and the 
port from which it is shipped. For l = 3, port(l) =1, avail(l) =6, Q’3 = 300.  



 

Figure 3: Example with 18 loads distributed over a period of 24 hours 

 

For this example, assume that 𝐶==1000 for all ships and that 𝑊 = 4 meaning load 𝑙  must leave 
by time  𝑎𝑣𝑎𝑖𝑙(𝑙) +𝑊 − 1. Also, let TR = 4, and LU = 2, the following results are obtained. 
Since  de

89:T;
  is an even number circularity is achieved in 24 hrs and TE = 1,…,32. The number 

of the ships required for this example is 4 and the solution is obtained by solving the BMP as 
shown in Figure 4. 



 

Figure 4: Solution with TR=4, LU=2 and W=4 

 

 

Note that if TR is increased from 4 to 6 hrs and LU remains at 2 hrs, then since, de
8�:TG

  is an odd 
number, 𝑇𝐸	 = 	1,… ,52. Solving the problem, we find that the number of ships required is now 
6 and the resulting schedule shown in Figure 5. 

 



 

Figure 5: Solution with TR=6, LU=2 and W=4 

 
 
 
Furthermore, assume a new load distribution based on Figure 6. Let 𝑇𝑅 = 4 and 𝐿𝑈 = 2. 
Waiting time remains 4 hrs and again since  de

89:T;
  is an even number circularity is achieved 

in 24 hrs and 𝑇𝐸 = 1,2,⋯ ,32. The optimal number of vessels is 4 and the circular schedule is 
shown in Figure 6. Note that the last load arriving at 𝑃  in time period 23, waits for the vessel 
departing at time period 2 the next day.  
 
 
 



 
 

Figure 6 Solution with TR=4, LU=2, and W=4 and loads waiting to be moved the next day 

 
 

3.3. Special Case with identical ships and No Waiting time for loads 

Consider the special case where ports have a maximum of one load 𝑙 with quantity 𝑄AB	 to be 
shipped within the same period as when the load becomes available. In this special case, W=0 
and the problem can be solved by the algorithm given below to compute the optimal number 
of the ships. 

 



Procedure for the special case of no-wait time for the loads: 

 

 

 

 

 

 

 

 

 

 

 

 

The above procedure returns the optimal number of ships. Consider the example shown in 
Figure 7 where TR = 4, LU = 2, 𝐶==1000, W=0 and the load arrivals as shown. We see that 11 
vessels are required if loads are required to shipped in the same time period where they arrive. 

Step 0: Create an ordered list L (𝐿 = {𝑙(`), 𝑙(d),⋯ , 𝑙(T)}),	of the loads from both ports 
in non-decreasing order of arrival times at the ports. Set 𝑙 = 1, 𝑁 = 0, 𝑖 = 0; 

Step 1: Pick the first load 𝑙(`) from set L, that needs to depart at time t=avail( 𝑙(`)) 
from port(𝑙(`)).  

Step 2: Schedule a ship 𝑖 = 𝑖 + 1	 to leave from that port(𝑙(`))  at time t and construct 
the regular schedule for ship i departing port(𝑙(A)) at  t=avail( 𝑙(`)) based on TR and 
TU. The ship will visit a number of ports and return to port p at time t (either in 24 
hrs or 48 hrs depending on if (24/ (travel + load/unload time)) is even or odd).  Set 
N = N+1; Choose the ship i so, it’s capacity is as close to the maximum load on the 
ports visited by i. 

Step 3: Remove all the loads carried by ship i on its circuit from the set L. 

Step 4: If L is empty stop. Else re-order the list L. 

Step 5: If not go to step 1. n = n+1; 

 



 

Figure 7 Solution with TR=4, LU=2 and W=0 

 
 
 
 



 

 

4. Discussions and Conclusion 
Finding new circular short sea services with countries on the West coast of Europe is a current and 
crucial issue for England. The supply chains between UK and Europe is tightly integrated with a 
constant flow of driver accompanied or unaccompanied trailers and containers moving between the 
English Channel and the North Sea on tight schedules. About 72%, of UK’s sea trade in 2017 was 
moved by short sea shipping. As can be seen in Figure 8, when it comes to unitised freight 
(containers and trailers), 73.1% was moved through the ports in the South of England (e.g. Dover, 
Felixstowe, London, Southampton, etc), with 26.9% going through the Northern ports such as Hull, 
Immingham and Liverpool among others. 

 

Figure 8: Percentage of unitised freight going through the Northern and Southern ports in UK in 2019 

This percentage has remained relatively stable over the last five years as can be seen from Figure 
9. But social distancing due to COVID -19 and the changes in custom regulations due to Brexit may 
have reduced the handling capacity of some ports. For example, the number of services on the 
Dover-Calais route has been reduced because of the ban of passenger travel due to COVID-19.  

 

Figure 9: Evolution of unitised freight showing that the number of units going through the Northern and Southern ports 
remained nearly the same since 2015 
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Shipping lines are looking to add new services to other ports to boost capacity, service level and create 
more resilience in the freight network. Ports further north are readying themselves to receive these new 
vessels. For instance, the port of Liverpool has invested more than £400m to create a new deep-water 
container terminal3, the ports of Hull and Immingham have invested more than £15m4 and £33m5, 
respectively, in gantry cranes, yard and other equipment for increasing the handling capacity of 
containers. Furthermore, in January 2021, a £47m6 investment was announced for three new border 
control posts at the Humber ports. These shipping lines will have to develop new schedules based on 
the load pattern at the ports and the algorithms developed in this paper can help in optimising the number 
of vessels considering waiting times. 
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Appendix 

Claim 1: If   8
89:T;

  is equal to an even number, then the number of periods required to achieve 
circularity is T. 

Proof: 

First observe that the ship will return to the first port it departs after an even number of trips. 
To achieve circularity, it needs to return to the same port in the same time period after T periods. 
Suppose there is a ferry that starts at time t and after n trips arrives at the same port. 

In this case the number of trips n done by the ship is: 

𝑛 =
𝑇

𝑇𝑅 + 𝐿𝑈 

 

The proof for this claim is done through contradiction.  

Let’s assume that the ferry starts a port in period t and after T periods it has not completed its 
cycle, meaning it is not at the same time-space position as it started. So, if after T periods the 
time space position is 𝑡B, then, 𝑡B ≠ 𝑡.  

From claim 1 we know that if n is an even number then 𝑡B is as follow:  

𝑡B = �𝑡 + 𝑛 × (𝑇𝑅 + 𝐿𝑈)� − 𝑇 

By replacing n in above equation, we have: 

𝑡B = �𝑡 + 8
8�:TG

× (𝑇𝑅 + 𝐿𝑈)� − 𝑇, and thus, 𝑡B = (𝑡 + 𝑇) − 𝑇  

Which results in 𝑡B = 𝑡. 

Claim 2: If  8
89:T;

   is equal to an odd number, then the number of periods required to achieve 
circularity is 2T. 

Proof: 

Suppose there is a ferry that starts at time t and after m trips arrives at the same port. 

In this case we can calculate m, the number of trips, as follow: 



𝑚 =
2𝑇

𝑇𝑅 + 𝐿𝑈 

Proceeding as in claim 1, let’s assume that the ferry starts at t but returns to the same port at 
time t’ where 𝑡B ≠ 𝑡. 

By construction we know that if m is equal to an odd number then 𝑡B is as follow:  

𝑡B = �𝑡 +𝑚 × (𝑇𝑅 + 𝐿𝑈)� − 2𝑇 

By replacing m in above equation, we have: 

𝑡B = �𝑡 + d8
89:T;

× (𝑇𝑅 + 𝐿𝑈)� − 2𝑇, and thus, 𝑡B = (𝑡 + 2𝑇) − 2𝑇  

Which results in 𝑡B = 𝑡. 

 

 

 

 

 

 

 


