When matter approaches a black hole’s event horizon – the point at which not even light can escape – it forms an orbiting disk. Matter in this disk will convert some of its energy to friction as it rubs against other particles of matter. This warms up the disk, just as we warm our hands on a cold day by rubbing them together. The closer the matter, the greater the friction. Matter closer to the event horizon glows brilliantly bright with the heat of hundreds of Suns. It is this light that the EHT detected, along with the “silhouette” of the black hole.
Producing the image and analysing such data is an amazingly hard task. As an astronomer who studies black holes in far away galaxies, I cannot usually even image a single star in those galaxies clearly, let alone see the black hole at their centres.
The EHT team decided to target two of the closest supermassive black holes to us – both in the large elliptical shaped galaxy, M87, and in Sagittarius A*, at the centre of our Milky Way.
To give a sense of how hard this task is, while the Milky Way’s black hole has a mass of 4.1 million Suns and a diameter of 60 million kilometres, it is 250,614,750,218,665,392 kilometres away from Earth – thats the equivalent of travelling from London to New York 45 trillion times. As noted by the EHT team, it is like being in New York and trying to count the dimples on a golf ball in Los Angeles, or imaging an orange on the moon.
To photograph something so impossibly far away, the team needed a telescope as big as the Earth itself. In the absence of such a gargantuan machine, the EHT team connected together telescopes from around the planet, and combined their data. To capture an accurate image at such a distance, the telescopes needed to be stable, and their readings completely synchronised.