jonathan-pownall

Dr Jonathan Pownall

Lecturer in Geology

Faculty and Department

  • Faculty of Science and Engineering
  • Department of Geography, Geology and Environment

Qualifications

  • MSc (University of Oxford)
  • PhD (Royal Holloway, University of London)

Summary

2006 - 2010: University of Oxford, undergraduate student

2010 - 2014: Royal Holloway University of London, PhD student in SE Asia Research Group

2014 - 2019: Australian National University, ARC DECRA Research Fellow

2019 - current: University of Hull, lecturer in geology.

Book Chapter

Miocene UHT granulites from Seram, eastern Indonesia: a geochronological–REE study of zircon, monazite and garnet

Pownall, J. M., Armstrong, R. A., Williams, I. S., Thirlwall, M. F., Manning, C. J., & Hall, R. (2019). Miocene UHT granulites from Seram, eastern Indonesia: a geochronological–REE study of zircon, monazite and garnet. In S. Ferrero, P. Lanari, P. Goncalves, & E. Grosch (Eds.), Metamorphic Geology: Microscale to Mountain Belts, 167-196. Geological Society. https://doi.org/10.1144/SP478.8

Conference Proceeding

Seram, the Seram Trough, the Aru Trough, the Tanimbar Trough and the Weber Deep: A new look at major structures in the eastern Banda Arc

Hall, R., Patria, A., Adhitama, R., Pownall, J. M., & White, L. T. (2017). Seram, the Seram Trough, the Aru Trough, the Tanimbar Trough and the Weber Deep: A new look at major structures in the eastern Banda Arc. https://doi.org/10.29118/IPA.50.17.91.G

Insights from easternmost Tethys: Slab rollback, mantle exhumation, and UHT metamorphism in Eastern Indonesia

Pownall, J., Hall, R., Forster, M., & Lister, G. (2018). Insights from easternmost Tethys: Slab rollback, mantle exhumation, and UHT metamorphism in Eastern Indonesia. In EGU General Assembly Conference Abstracts

A low-angle normal fault earthquake and tsunami: The 1852 Banda Sea Earthquake, Eastern Indonesia

Pownall, J., Pranantyo, I., Cummins, P., & Griffin, J. (2018). A low-angle normal fault earthquake and tsunami: The 1852 Banda Sea Earthquake, Eastern Indonesia. In AGU Fall Meeting Abstracts

Journal Article

Geological aspects of Banda Sea ecosystems and how they shape the oceanographical profile

Pownall, J. M., Hall, R., Lister, G. S., & Trihatmojo, A. (2018). Geological aspects of Banda Sea ecosystems and how they shape the oceanographical profile. IOP Conference Series: Earth and Environmental Science, 184(conference 1), https://doi.org/10.1088/1755-1315/184/1/012005

Research interests

Jon is a geologist who uses metamorphic petrology to quantify tectonic processes. He’s keen on investigating geologically-young and tectonically active parts of the Earth, such as eastern Indonesia, as a way to better understand how more mature mountain belts and terranes might have developed.

More specifically, my research interests include:

- (Ultra-)high temperature metamorphism and mantle exhumation on Seram, eastern Indonesia. Eastern Indonesia presents a rare snapshot in time of a complex tectonic system responding to the on-going collision of two continents. It therefore is an ideal region to investigate the mechanics of active subduction and the tectonic controls of crustal metamorphism. Episodes of ultrahigh-temperature (UHT, =900 °C) granulite metamorphism have been recorded in mountain belts since the Neoarchean. However, evidence for the tectonic mechanisms responsible for the generation of such extreme thermal conditions is rarely preserved. On Seram, 16 Ma UHT granulites—the youngest identified at the Earth’s surface—were recently discovered in the Kobipoto Mountains (Pownall et al., 2014). The generation of UHT conditions were attained through slab rollback–driven lithospheric extension caused core complex–style exhumation of hot subcontinental lithospheric mantle. Overlying continental crust, heated and metamorphosed by exhumed lherzolites, developed spinel + quartz (Fig. 1) and sapphirine-bearing residual assemblages, shown by phase equilibria modeling to have required temperatures of ~925 °C at ~9 kbar pressure. These findings would suggest that Seram may be a possible modern analogue for ancient orogens that incorporate UHT granulites.

- Tectonic Evolution of Seram and the Banda Arc, Eastern Indonesia.

The Banda Arc of Eastern Indonesia is one of the most striking topographic(/bathymetric) features on Earth, not only because of its extreme 180° curvature, but also because it encloses the 7 km Weber Deep – Earth’s deepest forearc basin. Subduction beneath the arc has been critical in accommodating the later stages of Australia–Southeast Asia collision, which initiated around 23 million years ago; however, disputes over whether one or two concave slabs comprise the subducted lithosphere, and the extent to which slab rollback operated during subduction has led to conflicting interpretations for how the arc evolved. On Seram, an episode of major lithospheric extension (Pownall et al., 2013; Pownall & Hall, 2014) that exhumed the upper mantle and drove UHT metamorphism (Pownall et al., 2014) attests to subduction rollback has having achieved the present-day slab geometry (Fig. 2). Rollback may also explain the formation of the enigmatic Weber Deep.

- Subduction in Indonesia. Indonesia exhibits numerous active tectonic subduction zones that are for the most part seismically active (Fig. 3), allowing structural analysis of the slabs to be performed using information from earthquake hypocentres. The link between the subduction of hydrous oceanic crust and the generation of porphyry-forming magmas and fluids is well recognised although, at present, not fully understood. The aims of this project are firstly to investigate the tectonic controls of fluid release from slabs and the generation of porphyry-forming magmas in the slab and/or mantle wedge. Secondly, the project aims to decipher the tectonic evolution of the overlying plate across, for instance, Java and Nusa Tenggara in order to investigate the mechanisms of individual porphyry emplacement events. Both these aims require the investigation of the larger-scale tectonic evolution of the Indonesian region, which in addition to geological evidence may be inferred through interpretation of seismic tomographic models. Geochronology is the final element of the project, with 40Ar/39Ar dating of deposits and associated metamorphic and magmatic rocks providing important constraints on the timing of porphyry emplacement with respect to metamorphic and deformational events in the upper plate. The ultimate aim is to build a 4 dimensional (3 spatial dimensions + time) plate reconstruction for the Indonesia region as a tool to better understand how the ripping and tearing of slabs may lead to the generation and emplacement of Cu ± Au and other deposits, in addition to further understanding how the region has responded during the on-going collision between Australia and SE Asia.

Awards and prizes

Murchison Fund of the Geological Society of London

2019 - 2019