Regression with Imprecise Data:
A Robust Approach

Marco Cattaneo and Andrea Wiencierz
Department of Statistics, LMU Munich

July 25, 2011
ISIPTA ’11, Innsbruck, Austria
Consider data on two variables, X and Y.

![Scatter plot of X vs Y]
Regression Analysis

- Consider data on two variables, X and Y.
- The aim is to investigate the relationship between X and Y.
The relationship between X and Y is described by:

$$Y = f(X) = a + bX,$$

$a, b \in \mathbb{R}$.

For which a and b does the function f best fit the data?
The relationship between X and Y is described by:

$$Y = f(X) = a + bX,$$

$a, b \in \mathbb{R}$.

For which a and b does the function f best fit the data?
For a given f, the (absolute) residuals are defined by
$R_{f,i} := |Y_i - f(X_i)|$.
Introduction

Linear Regression 2

- For a given f, the (absolute) residuals are defined by $R_{f,i} := |Y_i - f(X_i)|$.
- Ordinary Least Squares: f_{OLS} minimizes the mean of $R_{f,i}^2$.
Linear Regression 2

- For a given f, the (absolute) residuals are defined by $R_{f,i} := |Y_i - f(X_i)|$.
- Ordinary Least Squares: f_{OLS} minimizes the mean of $R_{f,i}^2$.
- Least Median of Squares: f_{LMS} minimizes the median of $R_{f,i}^2$.

![Graph showing linear regression with residuals indicated]
Imprecise Data

- Observation spaces of X and Y are partitioned into disjoint intervals.

![Graph](image.png)
Imprecise Data

- Observation spaces of X and Y are partitioned into disjoint intervals.
- Rectangular data: $[X_i, \overline{X}_i) \times [Y_i, \overline{Y}_i)$.

![Graph showing rectangular data distribution](image)
Imprecise Data

- Observation spaces of X and Y are partitioned into disjoint intervals.
- Rectangular data: $[X_i, \overline{X}_i) \times [Y_i, \overline{Y}_i)$.
- How to draw a line that reflects the relationship between X and Y?

![Graph showing rectangular data intervals and a line reflecting the relationship between X and Y]
Imprecise Data

- Observation spaces of X and Y are partitioned into disjoint intervals.
- Rectangular data: $[X_i, \bar{X}_i) \times [Y_i, \bar{Y}_i)$.
- How to draw a line that reflects the relationship between X and Y?
- Common simple method: OLS based on interval midpoints.
Imprecise Data

- Observation spaces of X and Y are partitioned into disjoint intervals.
- Rectangular data: $[X_i, \overline{X_i}] \times [Y_i, \overline{Y_i}]$.
- How to draw a line that reflects the relationship between X and Y?
- Common simple method: OLS based on interval midpoints.
- Further approaches: e.g. Domingues et al. (2010) or Ferson et al. (2007).
A Robust Approach to Regression with Imprecise Data

- Theoretical framework: likelihood-based decisions (Cattaneo, 2007).
A Robust Approach to Regression with Imprecise Data

- Theoretical framework: likelihood-based decisions (Cattaneo, 2007).
- We assume that the variables have precise values, which are imprecisely observed:

\[V_i := (X_i, Y_i) \quad \text{and} \quad V_i^* := [X_i, \overline{X}_i) \times [Y_i, \overline{Y}_i), \quad i = 1, \ldots, n. \]
A Robust Approach to Regression with Imprecise Data

- Theoretical framework: likelihood-based decisions (Cattaneo, 2007).
- We assume that the variables have precise values, which are imprecisely observed:

\[V_i := (X_i, Y_i) \quad \text{and} \quad V_i^* := [X_i, \bar{X}_i] \times [Y_i, \bar{Y}_i], \quad i = 1, \ldots, n. \]

- Nonparametric probability model:

\[\mathcal{P} := \{ P : (V_i, V_i^*), i = 1, \ldots, n, \text{i.i.d.} \land P(V_i \in V_i^*) \geq 1 - \varepsilon \}, \]

for some \(\varepsilon \in [0, 1] \).
A Robust Approach to Regression with Imprecise Data

- Theoretical framework: likelihood-based decisions (Cattaneo, 2007).
- We assume that the variables have precise values, which are imprecisely observed:
 \[V_i := (X_i, Y_i) \text{ and } V_i^* := [X_i, \bar{X}_i] \times [Y_i, \bar{Y}_i], \quad i = 1, \ldots, n. \]
- Nonparametric probability model:
 \[\mathcal{P} := \{ P : (V_i, V_i^*), i = 1, \ldots, n, \text{i.i.d.} \land P(V_i \in V_i^*) \geq 1 - \varepsilon \}, \]
 for some \(\varepsilon \in [0, 1] \).
- Given \(V_1^*, \ldots, V_n^* \), we reduce \(\mathcal{P} \) via the likelihood function to the set
 \[\mathcal{P}_{>\beta} := \{ P \in \mathcal{P} : lik(P) > \beta \}, \quad \text{for some (chosen) } \beta \in (0, 1). \]
A Robust Approach to Regression with Imprecise Data

- Theoretical framework: likelihood-based decisions (Cattaneo, 2007).
- We assume that the variables have precise values, which are imprecisely observed:
 \[V_i := (X_i, Y_i) \text{ and } V_i^* := \left[X_i, X_i \right] \times \left[Y_i, Y_i \right], \quad i = 1, \ldots, n. \]
- Nonparametric probability model:
 \[\mathcal{P} := \{ P : (V_i, V_i^*), i = 1, \ldots, n, \text{i.i.d.} \land P(V_i \in V_i^*) \geq 1 - \varepsilon \}, \]
 for some \(\varepsilon \in [0, 1] \).
- Given \(V_1^*, \ldots, V_n^* \), we reduce \(\mathcal{P} \) via the likelihood function to the set
 \[\mathcal{P}_{>\beta} := \{ P \in \mathcal{P} : \text{lik}(P) > \beta \}, \text{ for some (chosen) } \beta \in (0, 1). \]
- The set \(\mathcal{P}_{>\beta} \) determines interval-valued estimates of the median of the (absolute) residuals \(R_{f,i} \) for the regression functions \(f \).
• For each regression function f, we have an interval-valued evaluation, which is a confidence interval for the median of $R_{f,i}$.
Regression as a Decision Problem

- For each regression function f, we have an interval-valued evaluation, which is a confidence interval for the median of $R_{f,i}$.
- Interval dominance leads to a set of optimal regression functions.
Regression as a Decision Problem

- For each regression function f, we have an interval-valued evaluation, which is a confidence interval for the median of $R_{f,i}$.
- Interval dominance leads to a set of optimal regression functions.
- $(\Gamma-)\text{minimax}$ leads to one optimal regression function.
Result of Regression 1

- Regression analysis of the imprecise dataset shown before.
Result of Regression 1

- Regression analysis of the imprecise dataset shown before.
- We considered linear regression functions, \(f(X) = a + bX \).
Result of Regression 1

- Regression analysis of the imprecise dataset shown before.
- We considered linear regression functions, $f(X) = a + bX$.
- Calculations are based on a grid search.
Result of Regression 1

- Regression analysis of the imprecise dataset shown before.
- We considered linear regression functions, \(f(X) = a + b X \).
- Calculations are based on a grid search.
- The imprecision of the result mainly reflects the imprecision of the data.
We performed the same analysis on the dataset with imprecise observations of X, but precise data of Y. The result of the regression analysis is much more precise.
Result of Regression 2

- We performed the same analysis on the dataset with imprecise observations of X, but precise data of Y.
- The result of the regression analysis is much more precise.
Summary and Outlook

- We introduced a likelihood-based imprecise regression approach.
We introduced a likelihood-based imprecise regression approach. The approach is very general and the regression method covers many different settings:

- We can consider all kinds of imprecise data, not only disjoint intervals.
- The imprecise data can be wrong with a certain probability (\(\varepsilon > 0 \)).
- It is possible to consider more than one explanatory variable.
- There can be imprecision in dependent and explanatory variables at the same time.
- We can consider arbitrary regression functions, not only linear ones.
- Instead of the median we can use any other quantile.

The presented regression method yields very robust results.
Summary and Outlook

- We introduced a likelihood-based imprecise regression approach.
- The approach is very general and the regression method covers many different settings:
 - We can consider all kinds of imprecise data, not only disjoint intervals.
Summary and Outlook

- We introduced a likelihood-based imprecise regression approach.
- The approach is very general and the regression method covers many different settings:
 - We can consider all kinds of imprecise data, not only disjoint intervals.
 - The imprecise data can be wrong with a certain probability ($\varepsilon > 0$).
Summary and Outlook

- We introduced a likelihood-based imprecise regression approach.
- The approach is very general and the regression method covers many different settings:
 - We can consider all kinds of imprecise data, not only disjoint intervals.
 - The imprecise data can be wrong with a certain probability ($\varepsilon > 0$).
 - It is possible to consider more than one explanatory variable.
Concluding Remarks

Summary and Outlook

- We introduced a likelihood-based imprecise regression approach.
- The approach is very general and the regression method covers many different settings:
 - We can consider all kinds of imprecise data, not only disjoint intervals.
 - The imprecise data can be wrong with a certain probability ($\varepsilon > 0$).
 - It is possible to consider more than one explanatory variable.
 - There can be imprecision in dependent and explanatory variables at the same time.
Summary and Outlook

- We introduced a likelihood-based imprecise regression approach.
- The approach is very general and the regression method covers many different settings:
 - We can consider all kinds of imprecise data, not only disjoint intervals.
 - The imprecise data can be wrong with a certain probability ($\varepsilon > 0$).
 - It is possible to consider more than one explanatory variable.
 - There can be imprecision in dependent and explanatory variables at the same time.
 - We can consider arbitrary regression functions, not only linear ones.
Summary and Outlook

- We introduced a likelihood-based imprecise regression approach.
- The approach is very general and the regression method covers many different settings:
 - We can consider all kinds of imprecise data, not only disjoint intervals.
 - The imprecise data can be wrong with a certain probability ($\epsilon > 0$).
 - It is possible to consider more than one explanatory variable.
 - There can be imprecision in dependent and explanatory variables at the same time.
 - We can consider arbitrary regression functions, not only linear ones.
 - Instead of the median we can use any other quantile.
Summary and Outlook

- We introduced a likelihood-based imprecise regression approach.
- The approach is very general and the regression method covers many different settings:
 - We can consider all kinds of imprecise data, not only disjoint intervals.
 - The imprecise data can be wrong with a certain probability ($\varepsilon > 0$).
 - It is possible to consider more than one explanatory variable.
 - There can be imprecision in dependent and explanatory variables at the same time.
 - We can consider arbitrary regression functions, not only linear ones.
 - Instead of the median we can use any other quantile.
- The presented regression method yields very robust results.
