On the implementation of Likelihood-based Imprecise Regression

Marco Cattaneo and Andrea Wiencierz
Department of Statistics, LMU Munich

CFE-ERCIM 2011, London, UK
18 December 2011
simple linear regression

precise data: \((x_i, y_i) \in \mathbb{R}^2\) for each \(i \in \{1, \ldots, n\}\)
simple linear regression

- precise data: \((x_i, y_i) \in \mathbb{R}^2\) for each \(i \in \{1, \ldots, n\}\)
- linear regression: \(\mathcal{F} = \{f_{a,b} : a, b \in \mathbb{R}\}\) with \(f_{a,b} : x \mapsto a + b x\)
simple linear regression

- precise data: \((x_i, y_i) \in \mathbb{R}^2\) for each \(i \in \{1, \ldots, n\}\)
- linear regression: \(\mathcal{F} = \{f_{a,b} : a, b \in \mathbb{R}\}\) with \(f_{a,b} : x \mapsto a + b x\)
- (absolute) residuals: \(r_{f,i} = |y_i - f(x_i)|\) for each \(f \in \mathcal{F}, i \in \{1, \ldots, n\}\)
simple linear regression

- precise data: \((x_i, y_i) \in \mathbb{R}^2\) for each \(i \in \{1, \ldots, n\}\)
- linear regression: \(\mathcal{F} = \{f_{a,b} : a, b \in \mathbb{R}\}\) with \(f_{a,b} : x \mapsto a + b x\)
- (absolute) residuals: \(r_{f,i} = |y_i - f(x_i)|\) for each \(f \in \mathcal{F}, i \in \{1, \ldots, n\}\)
- Least Squares: \(f_{LS} = \arg\min_f \sum_i r_{f,i}^2\)
simple linear regression

breakdown point:
\(\varepsilon^*_LS = 0 \)

- precise data: \((x_i, y_i) \in \mathbb{R}^2\) for each \(i \in \{1, \ldots, n\}\)
- linear regression: \(\mathcal{F} = \{f_{a,b} : a, b \in \mathbb{R}\} \) with \(f_{a,b} : x \mapsto a + b x \)
- (absolute) residuals: \(r_{f,i} = |y_i - f(x_i)| \) for each \(f \in \mathcal{F}, i \in \{1, \ldots, n\}\)
- Least Squares: \(f_{LS} = \arg \min_f \sum_i r_{f,i}^2 = \arg \min_f \text{mean}_i r_{f,i}^2 \)
simple linear regression

breakdown point:
\[\varepsilon_{LS}^* = 0 \]
\[\varepsilon_{LMS}^* = \frac{1}{n} \left\lfloor \frac{n-1}{2} \right\rfloor \xrightarrow{n \to \infty} \frac{1}{2} \]

- precise data: \((x_i, y_i) \in \mathbb{R}^2\) for each \(i \in \{1, \ldots, n\}\)
- linear regression: \(\mathcal{F} = \{f_{a,b} : a, b \in \mathbb{R}\}\) with \(f_{a,b} : x \mapsto a + b x\)
- (absolute) residuals: \(r_{f,i} = |y_i - f(x_i)|\) for each \(f \in \mathcal{F}, i \in \{1, \ldots, n\}\)
- Least Squares: \(f_{LS} = \arg \min_f \sum_i r_{f,i}^2\) \(= \arg \min_f \text{mean}_i r_{f,i}^2\)
- Least Median of Squares: \(f_{LMS} = \arg \min_f \text{med}_i r_{f,i}^2\)
simple linear regression

breakdown point:
\[\varepsilon^*_{LS} = 0 \]
\[\varepsilon^*_{LMS} = \frac{1}{n} \left(\frac{n-1}{2} \right) \xrightarrow{n \to \infty} \frac{1}{2} \]

- precise data: \((x_i, y_i) \in \mathbb{R}^2\) for each \(i \in \{1, \ldots, n\}\)
- linear regression: \(\mathcal{F} = \{f_{a,b} : a, b \in \mathbb{R}\}\) with \(f_{a,b} : x \mapsto a + b \cdot x\)
- (absolute) residuals: \(r_{f,i} = |y_i - f(x_i)|\) for each \(f \in \mathcal{F}, i \in \{1, \ldots, n\}\)
- Least Squares: \(f_{LS} = \arg \min_f \sum_i r_{f,i}^2 = \arg \min_f \text{mean}_i r_{f,i}^2\)
- Least Median of Squares: \(f_{LMS} = \arg \min_f \text{med}_i r_{f,i}^2 = \arg \min_f \text{med}_i r_{f,i}\)
imprecisely observed data
imprecisely observed data

- imprecise data: \((x_i, \bar{x}_i, y_i, \bar{y}_i) \in \mathbb{R}^4\) for each \(i \in \{1, \ldots, n\}\)
imprecisely observed data

- imprecise data: \((\underline{x}_i, \overline{x}_i, \underline{y}_i, \overline{y}_i) \in \mathbb{R}^4\) for each \(i \in \{1, \ldots, n\}\)
imprecisely observed data

- imprecise data: $(\underline{x}_i, \bar{x}_i, \underline{y}_i, \bar{y}_i) \in \mathbb{R}^4$ for each $i \in \{1, \ldots, n\}$

- nonparametric statistical model: \mathcal{P} is the set of all probability measures P such that $\underline{X}_i, X_i, \bar{X}_i, \underline{Y}_i, Y_i, \bar{Y}_i$ have a joint distribution satisfying

$$\underline{X}_i \leq X_i \leq \bar{X}_i \quad \text{and} \quad \underline{Y}_i \leq Y_i \leq \bar{Y}_i \quad P\text{-a.s.}$$
imprecisely observed data

imprecise residuals:

\[r_{f,i} = \min_{(x,y) \in [x_i, \overline{x}_i] \times [y_i, \overline{y}_i]} |y - f(x)| \]

\[\overline{r}_{f,i} = \sup_{(x,y) \in [x_i, \overline{x}_i] \times [y_i, \overline{y}_i]} |y - f(x)| \]

for each \(f \in \mathcal{F}, i \in \{1, \ldots, n\} \)

- imprecise data: \((x_i, \underline{x}_i, \underline{y}_i, \overline{y}_i) \in \mathbb{R}^4\) for each \(i \in \{1, \ldots, n\} \)

- nonparametric statistical model: \(\mathcal{P} \) is the set of all probability measures \(P \) such that \(\underline{X}_i, \underline{x}_i, \overline{X}_i, \underline{Y}_i, \overline{Y}_i \) have a joint distribution satisfying

\[\underline{X}_i \leq X_i \leq \overline{X}_i \quad \text{and} \quad \underline{Y}_i \leq Y_i \leq \overline{Y}_i \quad P\text{-a.s.} \]
Likelihood-based Imprecise Regression

- imprecise probability models naturally appear with imprecise data:
Likelihood-based Imprecise Regression

- imprecise probability models naturally appear with imprecise data: for example, the empirical joint distribution $\hat{P}_{\overline{X},\overline{Y}}$ of the imprecise data corresponds to an imprecise joint distribution for the precise data: $\hat{P}_{X,Y}$ is a belief function with focal sets $[x_i, \overline{x}_i] \times [y_i, \overline{y}_i]$
Likelihood-based Imprecise Regression

- imprecise probability models naturally appear with imprecise data: for example, the empirical joint distribution $\hat{P}_{X,\bar{X},Y,\bar{Y}}$ of the imprecise data corresponds to an imprecise joint distribution for the precise data: $\hat{P}_{X,Y}$ is a belief function with focal sets $[x_i, \bar{x}_i] \times [y_i, \bar{y}_i]$

- likelihood function: $lik: P \mapsto \prod_{i=1}^{n} \frac{P(X_i = x_i, \bar{X}_i = \bar{x}_i, Y_i = y_i, \bar{Y}_i = \bar{y}_i)}{\hat{P}_{X,\bar{X},Y,\bar{Y}}(x_i, \bar{x}_i, y_i, \bar{y}_i)}$
Likelihood-based Imprecise Regression

- imprecise probability models naturally appear with imprecise data: for example, the empirical joint distribution $\widehat{P}_{X,X,Y,Y}$ of the imprecise data corresponds to an imprecise joint distribution for the precise data: $\widehat{P}_{X,Y}$ is a belief function with focal sets $[x_i, \overline{x}_i] \times [y_i, \overline{y}_i]$

- likelihood function: $lik : P \mapsto \prod_{i=1}^{n} \frac{P(X_i = x_i, \overline{X}_i = \overline{x}_i, Y_i = y_i, \overline{Y}_i = \overline{y}_i)}{\widehat{P}_{X,X,Y,Y}(x_i, \overline{x}_i, y_i, \overline{y}_i)}$

- likelihood-based learning of imprecise probability model: $\mathcal{P}_{>\beta} = \{ P \in \mathcal{P} : lik(P) > \beta \}$ for some cutoff point $\beta \in (0, 1)$
Likelihood-based Imprecise Regression

- Imprecise probability models naturally appear with imprecise data: for example, the empirical joint distribution $\hat{P}_{X, X, Y, Y}$ of the imprecise data corresponds to an imprecise joint distribution for the precise data: $\hat{P}_{X, Y}$ is a belief function with focal sets $[x_i, \bar{x}_i] \times [y_i, \bar{y}_i]$

- Likelihood function: $lik : P \mapsto \prod_{i=1}^{n} \frac{P(X_i = x_i, \bar{X}_i = \bar{x}_i, Y_i = y_i, \bar{Y}_i = \bar{y}_i)}{\hat{P}_{X, X, Y, Y}(x_i, \bar{x}_i, y_i, \bar{y}_i)}$

- Likelihood-based learning of imprecise probability model: $\mathcal{P}_{>\beta} = \{ P \in \mathcal{P} : lik(P) > \beta \}$ for some cutoff point $\beta \in (0, 1)$

- If $\beta \geq 2^{-n}$, then for each $f \in \mathcal{F}$, the median of the distribution of the (precise) residuals is imprecise under the model $\mathcal{P}_{>\beta}$:

 $$\overline{med}R_f = r_{f,(k+1)} \quad \text{and} \quad \overline{med}R_f = \overline{r}_{f,(\bar{k})},$$

 where $\sqrt[\sqrt{n}]{\beta} \mapsto \frac{k}{n}$ is a decreasing bijection $[\frac{1}{2}, 1) \to (\frac{1}{2}, 1]$, and $k = n - \bar{k}$
Likelihood-based Imprecise Regression

- Imprecise probability models naturally appear with imprecise data: for example, the empirical joint distribution $\hat{P}_{X,X,Y,Y}$ of the imprecise data corresponds to an imprecise joint distribution for the precise data: $\hat{P}_{X,Y}$ is a belief function with focal sets $[x_i, \bar{x}_i] \times [y_i, \bar{y}_i]$.

- Likelihood function: $lik : P \mapsto \prod_{i=1}^{n} \frac{P(X_i = x_i, X_i = \bar{x}_i, Y_i = y_i, Y_i = \bar{y}_i)}{\hat{P}_{X,X,Y,Y}(x_i, \bar{x}_i, y_i, \bar{y}_i)}$

- Likelihood-based learning of imprecise probability model: $\mathcal{P}_{>\beta} = \{ P \in \mathcal{P} : lik(P) > \beta \}$ for some cutoff point $\beta \in (0, 1)$

- If $\beta \geq 2^{-n}$, then for each $f \in \mathcal{F}$, the median of the distribution of the (precise) residuals is imprecise under the model $\mathcal{P}_{>\beta}$:

 $medR_f = r_{f,(k+1)}$ and $med\bar{R}_f = \bar{r}_{f,(\bar{k})}$,

 where $\sqrt[\beta]{\frac{k}{n}}$ is a decreasing bijection $[\frac{1}{2}, 1) \rightarrow (\frac{1}{2}, 1]$, and $k = n - \bar{k}$

- Likelihood-based Region Minimax: $f_{LRM} = \arg \min_f medR_f = \arg \min_f \bar{r}_{f,(\bar{k})}$
Likelihood-based Imprecise Regression

- imprecise probability models naturally appear with imprecise data: for example, the empirical joint distribution \(\hat{P}_{X,\overline{X},Y,\overline{Y}} \) of the imprecise data corresponds to an imprecise joint distribution for the precise data:
 \(\hat{P}_{X,Y} \) is a belief function with focal sets \([x_i, \overline{x}_i] \times [y_i, \overline{y}_i]\)

- likelihood function: \(lik : P \mapsto \prod_{i=1}^{n} \frac{P(X_i = x_i, \overline{X}_i = \overline{x}_i, Y_i = y_i, \overline{Y}_i = \overline{y}_i)}{\hat{P}_{X,\overline{X},Y,\overline{Y}}(x_i, \overline{x}_i, y_i, \overline{y}_i)} \)

- likelihood-based learning of imprecise probability model:
 \(\mathcal{P}_{>\beta} = \{ P \in \mathcal{P} : lik(P) > \beta \} \) for some cutoff point \(\beta \in (0, 1) \)

- if \(\beta \geq 2^{-n} \), then for each \(f \in \mathcal{F} \), the median of the distribution of the (precise) residuals is imprecise under the model \(\mathcal{P}_{>\beta} \):
 \[
 \overline{med}R_f = r_{f,(k+1)} \quad \text{and} \quad \overline{med}R_f = \overline{r}_{f,(\overline{k})},
 \]
 where \(\sqrt[\overline{n}]{\beta} \mapsto \frac{k}{n} \) is a decreasing bijection \([\frac{1}{2}, 1) \rightarrow (\frac{1}{2}, 1] \), and \(k = n - \overline{k} \)

- Likelihood-based Region Minimax: \(f_{LRM} = \arg \min_f \overline{med}R_f = \arg \min_f \overline{r}_{f,(\overline{k})} \)

- interval dominance: \(\mathcal{U} = \{ f \in \mathcal{F} : \overline{med}R_f \leq \overline{med}R_{f_{LRM}} \} \) is the set of all undominated regression lines
Algorithm for f_{LRM}

If less than k intervals $[y_i, y_i]$ are bounded, then $\text{medR}_f = +\infty$ for each $f \in F$.

Otherwise, consider the strip $f_{LRM} \pm \text{medR}_f = f_{LRM} \pm r_{LRM}$, (k).

If $LRM \pm \text{medR}_f$ is the thinnest strip of the form $f \pm q$ containing (at least) k imprecise data $[x_i, x_i] \times [y_i, y_i]$, for all $f \in F$, $q \in [0, +\infty)$.

If the slope $b_{LRM} \neq 0$, then the imprecise data contained in $f_{LRM} \pm \text{medR}_f$ are bounded and (at least) 3 of them touch the boundary of the strip. Therefore, b_{LRM} is either 0 or it is determined by a couple of bounded imprecise data, which gives us at most 4 possible values for b_{LRM}.
algorithm for f_{LRM}

$n = 17$
$\beta = 0.8$
$\Rightarrow \overline{k} = 10$
Algorithm for f_{LRM}

$n = 17$
$\beta = 0.8$
$\Rightarrow \bar{k} = 10$

If less than \bar{k} intervals $[y_i, \bar{y}_i]$ are bounded, then $\text{med} R_f = +\infty$ for each $f \in \mathcal{F}$
Algorithm for f_{LRM}

$n = 17$
$\beta = 0.8$
$\Rightarrow \bar{k} = 10$

if less than \bar{k} intervals $[y_i, \bar{y}_i]$ are bounded, then $\text{med}R_f = +\infty$ for each $f \in \mathcal{F}$

otherwise, consider the strip
$f_{LRM} \pm \text{med}R_{f_{LRM}}$
algorithm for f_{LRM}

$n = 17$
$\beta = 0.8$
$\Rightarrow \bar{k} = 10$

if less that \bar{k} intervals $[y_i, \bar{y}_i]$ are bounded, then $\text{med} R_f = +\infty$ for each $f \in \mathcal{F}$

otherwise, consider the strip $f_{LRM} \pm \text{med} R_{f_{LRM}} = f_{LRM} \pm \bar{r}_{f_{LRM},(k)}$
algorithm for f_{LRM}

\[n = 17 \]
\[\beta = 0.8 \]
\[\Rightarrow \overline{k} = 10 \]

if less that \overline{k} intervals $[y_i, \overline{y}_i]$ are bounded, then $\text{med} R_f = +\infty$ for each $f \in F$

otherwise, consider the strip
\[f_{LRM} \pm \text{med} R_{f_{LRM}} = f_{LRM} \pm \overline{r}_{f_{LRM},(\overline{k})} \]

- $f_{LRM} \pm \text{med} R_{f_{LRM}}$ is the thinnest strip of the form $f \pm q$ containing (at least) \overline{k} imprecise data $[x_i, \overline{x}_i] \times [y_i, \overline{y}_i]$, for all $f \in F$, $q \in [0, +\infty)$
algorithm for \(f_{LRM} \)

\[n = 17 \]
\[\beta = 0.8 \]
\[\Rightarrow \bar{k} = 10 \]

if less than \(\bar{k} \) intervals \([y_i, \bar{y}_i]\) are bounded, then \(\text{med} R_f = +\infty \) for each \(f \in \mathcal{F} \)

otherwise, consider the strip
\[f_{LRM} \pm \text{med} R_{f_{LRM}} = f_{LRM} \pm \bar{r}_{f_{LRM},(k)} \]

\(f_{LRM} \pm \text{med} R_{f_{LRM}} \) is the thinnest strip of the form \(f \pm q \) containing (at least) \(\bar{k} \) imprecise data \([x_i, \bar{x}_i] \times [y_i, \bar{y}_i] \), for all \(f \in \mathcal{F} \), \(q \in [0, +\infty) \)

if the slope \(b_{LRM} \neq 0 \), then the imprecise data contained in \(f_{LRM} \pm \text{med} R_{f_{LRM}} \) are bounded and (at least) 3 of them touch the boundary of the strip
algorithm for f_{LRM}

$n = 17$
$\beta = 0.8$
$\Rightarrow \bar{k} = 10$

if less that \bar{k} intervals $[y_i, \bar{y}_i]$ are bounded, then $\overline{medR}_f = +\infty$ for each $f \in \mathcal{F}$

otherwise, consider the strip $f_{LRM} \pm \overline{medR}_{f_{LRM}} = f_{LRM} \pm \overline{r}_{f_{LRM},(k)}$

- $f_{LRM} \pm \overline{medR}_{f_{LRM}}$ is the thinnest strip of the form $f \pm q$ containing (at least) \bar{k} imprecise data $[\underline{x}_i, \overline{x}_i] \times [\underline{y}_i, \overline{y}_i]$, for all $f \in \mathcal{F}$, $q \in [0, +\infty)$
- if the slope $b_{LRM} \neq 0$, then the imprecise data contained in $f_{LRM} \pm \overline{medR}_{f_{LRM}}$ are bounded and (at least) 3 of them touch the boundary of the strip
- therefore, b_{LRM} is either 0 or it is determined by a couple of bounded imprecise data, which gives us at most $4 \binom{n}{2} + 1$ possible values for b_{LRM}
undominated regression lines

\[(a, b) \in \mathbb{R}^2 : f(a, b) \in U = [k_i = 1^n \ (a, b) \in \mathbb{R}^2 : d_{b,i}(i + k) - \text{med}_R f_{LRM} \leq a \leq d_{b,i}(i) + \text{med}_R f_{LRM}]\]

For example:
\[
\text{med}_R f_{LRM} \approx 0.354, \quad \text{med}_R f_{LMS} \approx 0.002, \quad \text{med}_R f_{LS} \approx 0.909
\]
undominated regression lines

I set of undominated parameters:

\((a, b) \in \mathbb{R}^2: f_{a, b} \in U = \left\{ k_i = 1 \right\}^n (a, b) \in \mathbb{R}^2: d_{b, i} - \text{med} R_{LM} \leq a \leq d_{b, i} + \text{med} R_{LM} \)

where

\(d_{b, i} = \inf_{x \in [x_i, x_i]} (y_i - b x)\) and

\(d_{b, i} = \sup_{x \in [x_i, x_i]} (y_i - b x)\)

I for example:

\(\text{med} R_{LM} \approx 0.354, \text{med} R_{LMS} \approx 0.002, \text{med} R_{LS} \approx 0.909\)
undominated regression lines

- set of undominated parameters: \(\{(a, b) \in \mathbb{R}^2 : f_{a,b} \in \mathcal{U}\} \)
undominated regression lines

set of undominated parameters: \[\{(a, b) \in \mathbb{R}^2 : f_{a,b} \in \mathcal{U}\} = \bigcup_{i=1}^{k} \left\{ (a, b) \in \mathbb{R}^2 : \bar{d}_{b,(i+k)} \leq a \leq \bar{d}_{b,(i)} + \overline{\text{med}} R_{f_{LRM}} \right\}, \]

where \(\bar{d}_{b,i} = \inf_{x \in [\underline{x}_i, \overline{x}_i]} (y_i - bx) \) and \(\bar{d}_{b,i} = \sup_{x \in [\underline{x}_i, \overline{x}_i]} (\bar{y}_i - bx) \)
undominated regression lines

- set of undominated parameters: \(\left\{ (a, b) \in \mathbb{R}^2 : f_{a,b} \in \mathcal{U} \right\} = \bigcup_{i=1}^{k} \left\{ (a, b) \in \mathbb{R}^2 : d_{b,(i+k)} - \text{med}R_{f_{LRM}} \leq a \leq d_{b,(i)} + \text{med}R_{f_{LRM}} \right\} \),

where \(d_{b,i} = \inf_{x \in [\underline{x}_i, \overline{x}_i]} (y_i - b \cdot x) \) and \(d_{b,i} = \sup_{x \in [\underline{x}_i, \overline{x}_i]} (\overline{y}_i - b \cdot x) \)

- for example: \(\text{med}R_{f_{LRM}} \approx 0.354 \), \(\text{med}R_{f_{LMS}} \approx 0.002 \), \(\text{med}R_{f_{LS}} \approx 0.909 \)
statistical properties of LIR

- breakdown point: $\varepsilon_{LIR}^* = \frac{k}{n} \xrightarrow{n \to \infty} \frac{1}{2}$
statistical properties of LIR

- breakdown point: \(\varepsilon_{LIR}^* = \frac{k}{n} \xrightarrow{n \to \infty} \frac{1}{2} \)

- coverage probability of \(\mathcal{U} \): \(Y_i = a_0 + b_0 X_i + \varepsilon_i \) with \(X_i, \varepsilon_i \overset{i.i.d.}{\sim} F_0 \)
statistical properties of LIR

- **breakdown point:**
 \[\varepsilon^*_\text{LIR} = \frac{k}{n} \xrightarrow{n \to \infty} \frac{1}{2} \]

- **coverage probability of \(U \):**
 \[Y_i = a_0 + b_0 X_i + \varepsilon_i \]
 with
 \[X_i, \varepsilon_i \sim_{i.i.d.} F_0 \]

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>(n)</th>
<th>(P(\text{med} R_f \leq \text{med} R_f \leq \text{med} R_f))</th>
<th>(F_0)</th>
<th>(P(f_{a_0,b_0} \in U))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>20</td>
<td>0.737</td>
<td>Normal</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cauchy</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>0.758</td>
<td>Normal</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cauchy</td>
<td>1.00</td>
</tr>
<tr>
<td>0.75</td>
<td>20</td>
<td>0.497</td>
<td>Normal</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cauchy</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>0.533</td>
<td>Normal</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cauchy</td>
<td>1.00</td>
</tr>
<tr>
<td>0.999</td>
<td>20</td>
<td>0.176</td>
<td>Normal</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cauchy</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>0.025</td>
<td>Normal</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cauchy</td>
<td>0.01</td>
</tr>
</tbody>
</table>

