Combining Belief Functions Issued from Dependent Sources

MARCO E. G. V. CATTANEO
ETH Zürich, Switzerland

Definition. A piece of information about a finite set of propositional variables is described by a basic belief assignment (bba)

$$m : 2^\Omega \to [0, 1] \text{ s.t. } m(\emptyset) = 0 \text{ and } \sum_A m(A) = 1,$$

where Ω is the set of valuations of the propositional language (i.e. Ω is the set of “possible worlds” ⇒ the “open-world assumption” does not make sense).

The respective belief and plausibility functions on Ω are defined by

$$\text{bel}(A) = \sum_{B \subseteq A} m(B) \quad \text{and} \quad \text{pl}(A) = \sum_{B \cap A \neq \emptyset} m(B).$$

to pool the information issued from two sources

\leadsto combine the respective bbas m_1 and m_2 in a new bba m_{12}

independence of the sources assumed

(this assumption can be justified only by analogies with other situations in which it proved to be sensible)

\leadsto use Dempster’s rule of combination:

$$m_{12}(A) \propto \sum_{B \cap C = A} m_1(B) m_2(C) \text{ if } A \neq \emptyset$$
to allow the dependence of the sources
\leadsto generalize Dempster’s rule

Definition. A joint belief assignment (jba) with marginal bbas m_1 and m_2 is a function

$$m : 2^\Omega \times 2^\Omega \to [0, 1] \text{ s.t. } \sum_B m(A, B) = m_1(A)$$

$$\text{and } \sum_A m(A, B) = m_2(B).$$

combination with respect to a jba m:

$$m_{12}(A) \propto \sum_{B \cap C = A} m(B, C) \text{ if } A \neq \emptyset$$

(\Rightarrow the independence assumption corresponds to the choice of the jba $m(A, B) = m_1(A) m_2(B)$)

nothing assumed about the sources
\leadsto play safe and choose the “most conservative” combination
MINIMAL CONFLICT

Definition. A combination \(\text{bel}_{12} \) of two belief functions \(\text{bel}_1 \) and \(\text{bel}_2 \) is monotonic if

\[
\text{bel}_{12} \geq \text{bel}_1 \quad \text{and} \quad \text{bel}_{12} \geq \text{bel}_2.
\]

Definition. The conflict of the combination with respect to a jba \(m \) is

\[
\sum_{A \cap B = \emptyset} m(A, B).
\]

(no conflict \(\Rightarrow \) the combination is monotonic)

the conflict is a good index for the nonmonotonicity of a combination

\(\sim \) the “most conservative” combination has minimal conflict

Theorem. The minimal conflict of the combinations of \(\text{bel}_1 \) and \(\text{bel}_2 \) is

\[
\max_{A} \left(\text{bel}_1(A) - \text{pl}_2(A) \right).
\]

Corollary. The monotonicity of the combination of \(\text{bel}_1 \) and \(\text{bel}_2 \) is admissible (i.e. \(\exists \) \(\text{bel} \) s.t. \(\text{bel} \geq \text{bel}_1 \) and \(\text{bel} \geq \text{bel}_2 \)) if and only if they are compatible (i.e. \(\text{bel}_1 \leq \text{pl}_2 \)).

In this case, the combinations with minimal conflict are monotonic.
In the generalized Bayes’ theorem, combinations with minimal conflict lead to better results than combinations obtained from Dempster’s rule.

Consider n hypotheses h_1, \ldots, h_n implying the belief functions bel_1, \ldots, bel_n on Ω, respectively.
Let the belief function bel_o on Ω represent an observation and let c_1, \ldots, c_n be the conflicts of its combination with bel_1, \ldots, bel_n, respectively.
In the simplest case, the prior belief function on $\{h_1, \ldots, h_n\}$ is an epistemic probability p_1, \ldots, p_n. In this case, the posterior belief function is the epistemic probability p'_1, \ldots, p'_n, with

$$p'_i \propto (1 - c_i) p_i.$$

Thus the conflicts come out as the measure of the disagreement between the respective hypotheses and the observation.

If the c_i are the minimal conflicts, then from $bel_o \leq pl_i$ (i.e. h_i is compatible with the observation) follows $p'_i \geq p_i$.
This is not assured if we use Dempster’s rule: $p'_i < p_i$ is possible even if $bel_o = bel_i$ (i.e. h_i is “perfect”).

As a measure of the disagreement between two belief functions, the minimal conflict (1) is much better than the conflict of Dempster’s rule.

Example. $\Omega = \{a, b\}$, $n = 4$, $bel_o = bel_1$, bel_2 is vacuous.

<table>
<thead>
<tr>
<th>i</th>
<th>$m_i({a})$</th>
<th>$m_i({b})$</th>
<th>$m_i(\Omega)$</th>
<th>Dempster’s rule</th>
<th>minimal conflict</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.4</td>
<td>0.1</td>
<td>0.4 0.84</td>
<td>0 1.18</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0 1.40</td>
<td>0 1.18</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.7</td>
<td>0.3</td>
<td>0.35 0.91</td>
<td>0.2 0.94</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.4 0.84</td>
<td>0.4 0.71</td>
</tr>
</tbody>
</table>
MINIMAL SPECIFICITY

Definition. The *measure of nonspecificity* of a belief function with bba m is

$$\sum_{A \neq \emptyset} m(A) \log_2 |A|.$$

if the combination with minimal conflict is not unique

\leadsto the "most conservative" combination has minimal specificity (i.e. it maximizes the measure of nonspecificity) among the ones with minimal conflict

Definition. bel_2 is a specialization of bel_1 if m_2 can be obtained through redistribution of $m_1(A)$ to the non-empty sets $B \subseteq A$, for all $A \subseteq \Omega$.

Theorem. bel_1 and bel_2 have a common specialization if and only if they are compatible (i.e. $bel_1 \leq pl_2$). In this case, the combinations with minimal specificity among the ones with minimal conflict are the least specific common specializations of bel_1 and bel_2.

To obtain a combination with minimal specificity among the ones with minimal conflict

\leadsto maximize a linear functional on the convex polytope (in $\mathbb{R}^{2^{[\Omega]}}$) of the jbas

the solutions build a convex polytope

\leadsto choose a point of the polytope in such a way that the obtained rule $(bel_1, bel_2) \mapsto bel_1 \odot bel_2$ satisfies some requirements of invariance (choose for instance the centre of the polytope)
Conservative Combination Rule

The obtained “most conservative” combination rule \odot has the following properties.

- **commutativity:**

 $\text{bel}_1 \odot \text{bel}_2 = \text{bel}_2 \odot \text{bel}_1$

- **monotonicity** (if admissible, i.e. if $\exists \text{bel}$ s.t. $\text{bel} \geq \text{bel}_1$ and $\text{bel} \geq \text{bel}_2$):

 $\text{bel}_1 \odot \text{bel}_2 \geq \text{bel}_1$ and $\text{bel}_1 \odot \text{bel}_2 \geq \text{bel}_2$

- $\text{bel}_1 \odot \text{bel}_2$ is a least specific common specialization of bel_1 and bel_2

 (if a common specialization exists)

 \Rightarrow **absorption:**

 bel_s is a specialization of bel \Rightarrow $\text{bel}_s \odot \text{bel} = \text{bel}_s$

 \Rightarrow **idempotency:**

 $\text{bel} \odot \text{bel} = \text{bel}$

But minimization of conflict and idempotency are both incompatible with associativity.

Thus the binary rule \odot is not associative, but it can be easily extended to an n-ary rule for the simultaneous combination of any number of belief functions: simply consider the n-dimensional jbas instead of the 2-dimensional ones.